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ABSTRACT: 

In this paper, an automatic approach for identifying bridges over water in satellite images is proposed. The proposed algorithm has 

three main steps. It starts with extracting the water regions in the satellite image by thresholding the NIR and clustering the NDWI 

images. Next possible river and water canals in the extracted water mask are identified by certain geometric constraints. Finally 

possible bridge regions are extracted by morphological operations applied to the water and river-canal mask. An optional step for 

verifying the bridge regions are also proposed in the study. The verification step uses orientation information or road mask for 

obtaining higher precision values. Tests are conducted using the proposed approach on different satellite images and quantitative and 

visual results showed that algorithm is successful in identifying different sized bridges over water. 

 

1. INTRODUCTION 

Locations of bridges are important for city-region planning and 

GIS applications to ensure an up to date geographical database. 

They may be used for monitoring the traffic network in 

emergency cases such as natural disasters and traffic accidents. 

Bridges are also critical for military applications since they are 

highly strategic points. The purpose of this study is to 

automatically identify bridges over water in high resolution 

multispectral satellite images. 

 

Bridge extraction from satellite images is not studied 

extensively in the literature. In the study by Luo et. al., 2007, a 

knowledge based and supervised approach to extract bridges 

from IKONOS panchromatic data, using a GMRF-SVM 

classification method to extract water regions is utilized which 

is followed by image thinning, removal of fragmented lines, 

trunk detection using width characteristics, vectorization and 

feature expression. In a study which focuses on all type of 

bridges, a supervised approach is proposed which uses neural 

networks where radiometric, textural and geometrical attributes 

of each pixel is considered (Triaz-Sans & Lomenic, 2003). 

There are other works that make use of context knowledge in 

addition to data extracted from the input image. Using the well 

known facts about bridges, a rule base is constructed and 

bridges are extracted according to these rules. In such a study, 

the image is classified into three classes, water, concrete and 

background (Chaudhuri & Samal, 2008). Then bridge regions 

are extracted using this classification results and a knowledge-

based approach that exploits the spatial arrangement of bridges. 

In the study by Gu et. al., 2011, water areas are found using 

segmentation and possible river mask is extracted from the 

water regions. Following this step, possible bridge regions are 

extracted using prior knowledge then verified using geometric 

constraints. There also exist works in literature which utilize 

elevation data. For example, in a study, InSAR data is used for 

feature extraction and visualization of bridges (Soergel et. al., 

2008). In this work, the elevation information (DEM) extracted 

from SAR data is combined with an orthophoto. In the work by 

Schulz et. al., 2007, the special signature of bridges that emerge 

in SAR images are utilized for identifying bridge regions. In 

another study which utilizes elevation information, LIDAR data 

is used for extracting bridges (Sithole & Vosselman, 2006). 

This work employs the topological information that exists in the 

cross-sections to identify seed bridge points. Then these 

extracted seeds are utilized for detecting individual bridges. 

2. METHOD 

2.1. Data 

In this study, IKONOS satellite images with 1 meter 

panchromatic and 4 meters multispectral resolution and 

GEOEYE images with 0.5 panchromatic and 2 meters 

multispectral resolution are used for automatically extracting 

bridges over water. The reflectance values for the images are 11 

bits. The multispectral bands for the images are Blue, Green, 

Red and Near Infrared (NIR). Pan-sharpening is applied on the 

images to fuse the data present at panchromatic and 

multispectral bands. The tests are conducted using those pan-

sharpened images. Example IKONOS and GEOEYE pan-

sharpened images are shown at Figure 1. 

 

  

a) b) 

Figure 1 Example Satellite Images a) IKONOS b) 

GEOEYE 

2.2. Proposed Algorithm 

This study focuses on identifying bridges over river and water 

canals. In this study, all the information needed for identifying 

bridges is extracted from the electro-optic images.  

 

The proposed algorithm starts by identifying the possible water 

regions in the image. The extracted water mask is then filtered 

by taking into account the connected components geometric 
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properties to identify the river and water canal regions. 

Following this step, the bridge regions in the image are 

extracted using the water mask and river-water canal mask. The 

verification step could also be added for better precision results. 

In this step, the identified bridge regions are verified using the 

geometric constraints of bridges and orientation information. 

Also, road mask could be used for further verification, since the 

continuity of road mask on the bridges should be ensured. Flow 

chart of the proposed algorithm is depicted in Figure 

2.Aforementioned steps will be explained in this section.  

 

 

Figure 2 Flow Chart of the Proposed Approach 

2.2.1. Identification of Water Regions: Even though 

identification of water regions in satellite images is an 

extensively studied subject, the different spectral characteristics 

of satellites and atmospheric differences at satellite images 

makes finding a sweeping solution difficult.  However, it is 

known that the NIR reflection values of water regions are 

generally smaller than the other band reflection values as it 

stated in previous works in the literature (Zhao et. al., 2009). 

Utilizing this knowledge, input image is filtered using the NIR 

band to find the water regions. The tests which are conducted 

using high number of satellite images showed that, in 11 bit 

GEOEYE and IKONOS images, water regions have reflection 

values smaller than 250 in the NIR band. This value, which is 

obtained experimentally, is used in the proposed method. Using 

a threshold value smaller than this resulted in such an outcome 

where the actual water regions are classified as non-water. 

Similarly, using a threshold value higher than the obtained value 

resulted in classifications where many regions that are not water 

being classified as water regions.  However, shadows and some 

man-made objects have similar reflectance characteristics to 

water. To achieve better classification, Normalized Difference 

Water Index (NDWI) is used. Computation of NDWI is shown 

at Equation 1. 

 

      
                           

                           
                                          (1) 

 

Since the water regions have higher reflection values in green 

band than near infrared band, NDWI values of such regions will 

be higher than the rest. After the image is filtered such that only 

the pixels with NIR reflectance value smaller than 250, NDWI 

values of the filtered image is computed. Then the NDWI 

values of the filtered image are clustered into two using the k-

means clustering algorithm. The members of the cluster with the 

higher valued centroid are chosen as the water regions. 

Although it is not always possible to distinguish water from 

shadows using this approach, it still gave better results than 

simple thresholding. Visual outputs of this approach are given 

at Figure 3. 

 

  

Figure 3 Water Region Outputs 

2.2.2. Extraction of River and Water Canals: After 

finding the water regions at the image, connected components 

which depict characteristics of river and water canals are 

extracted using the binary mask obtained in the former step. It is 

known that rivers and canals are thin, long and continuous 

structures. For this purpose, every connected component at the 

water mask is checked to see if they satisfy some geometric 

constraints.  These geometric constraints are having a major 

axis larger than 300 pixels (meters) and satisfying the inequality 

shown in Equation 2. The threshold value 300 is found 

experimentally. A higher threshold for major axis resulted in 

classifying regions which are not actually river and water canals 

as such. Similarly, actual river and water canal regions are not 

found as such if a smaller threshold is used. The inequality 

depicted in Equation 2 makes sure that the resulting connected 

components are long and thin. A broader explanation of this 

inequality and its members are present at the literature 

(Karaman et. al., 2012). 

                       
 

    
                                                       (2) 

Using the mentioned constraints, long and thin connected 

components are identified and included in the river and canal 

mask. Outputs of this step are shown at Figure 4. 

  

Figure 4 River and Water Canal Outputs 

2.2.3. Extraction of Bridge Regions: It is known that 

bridges divide rivers and canals into two different components 

by passing over them. Also fluidic regions like river and water 

canals are expected to connect to another water region. Using 
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these pieces of knowledge about bridges, the water and river 

canal mask obtained in the previous steps are analyzed together. 

The main idea of that analysis is to connect the connected 

components at the river and water canal mask to the closest 

water regions to their extrema points. Extrema points could be 

briefly defined as the corner points of any convex shape. For 

example, Figure 5b shows the extrema points of the river-canal 

mask which is shown at Figure 5a. For finding extrema points 

of a component, the method which is used commonly in the 

literature is used (Haralick & Shapiro, 1992). For any extrema 

point, a circular search region is created with the extrema point 

at the center of this region. Inside this search region, if any 

water region exists, edge pixels of this water region are 

extracted. The edge pixels which are inside the search region 

and have the lowest distance to the extrema pixel of the river-

water canal component are matched. Finally, matched pixels are 

connected with a line and the area between those lines is filled. 

Resulting new filled area corresponds to the possible bridge 

regions. 

  
a) b) 

  
c) d) 

Figure 5 Extraction of bridges a) River and Water 

Canal mask b) Extrema Points c)Connection of 

extrema points and matching pixels d) Bridge regions 

2.2.4. Verification of Bridge Regions: Regions found by 

connecting river-water canals and water regions are not 

guaranteed to be rivers. Especially when dealing with images 

that include complex features, it would be needed to verify the 

bridge regions using supplementary modules. In this study, two 

different methods for verification of bridges are proposed. 

Those two approaches respectively rely on the geometric 

characteristic of bridges and continuity of roads over bridges.  

2.2.4.1 Verification using Orientation Information: One of 

the most important characteristics of bridges over water regions 

are perpendicularly cutting of the water structures they are over. 

To analyze the orientation differences between the bridge 

regions and river-canal structures, the input satellite image is 

segmented using Mean-Shift Segmentation method which is 

extensively studied in the literature (Comanicu & Meer, 2002; 

Christoudias et. al., 2002). Then, every segment that forms the 

bridge region is found and their orientation is computed. Those 

segments orientation then compared with the connected 

component in the river-canal mask which created the bridge 

region in the former step. For the real bridge regions, it is 

expected that orientation difference between the bridge 

segments and the river-water canal component to be higher than 

70 degrees. Segments that do not satisfy this orientation 

difference are excluded from the bridge mask. Figure 6 shows a 

simple run of the proposed verification step. The segments in 

Figure 6a are verified using the orientation difference and 

resulting mask is given at Figure 6b.  

 

  
a) b) 

Figure 6 Verification using orientation information 

a)Bridge Mask b) Orientation-Verified Bridge Mask 

2.2.4.2 Verification using Road Mask: It is known that 

bridges must ensure the continuity of roads and bridge regions 

should also be included in the road mask. To check the validity 

of the bridge regions, a road mask which is extracted from the 

image using the method explained in the work of Karaman et. 

al., 2012, is used. The regions which are identified as bridges 

should also be present at the road mask. Therefore any segment 

which is included in the bridge region but not present at the road 

mask is excluded from the final bridge mask 

 

 
              a)                             b)                            c) 

Figure 7 Verification using road mask a) Bridge Mask 

b) Road Mask c) Verified Bridge Mask 

Figure 7 shows a sample run of the verification step. It could be 

seen that by verification, width characteristics of the bridge is 

corrected, the region now only covers the real parts of the 

bridge. Some parts, that are not actually present in the  

3. EXPERIMENTS AND DISCUSSION 

The proposed approach was tested on 10 GEOEYE and 10 

IKONOS satellite images. GEOEYE images have 9 and 

IKONOS images 8 bridges on them, 17 bridges in total. Our 

algorithm, without any verification attempt, found all of the 

bridges at GEOEYE images and 5 out of 8 at IKONOS images. 

Unidentified bridges at those tests are mostly due to missing 

water areas in the water mask.  Also, 1 region in the GEOEYE 
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and 2 regions in the IKONOS images are mistakenly identified 

as bridges in those tests. This is again due to ill formed water 

mask. In some cases, shadow regions are still mistaken for 

water regions. If the misclassified shadow region is structurally 

similar to the river and water canals with long and thin 

geometry, the gaps between them could be misclassified as 

bridges. The orientation verification step marked those 3 

misclassified bridges as false bridges and eliminated them, but 

in the process some real bridges are also eliminated (3 in 

IKONOS and 1 in GEOEYE images). Similar to the orientation 

verification, verification using road mask was successful at 

eliminating the false positives. But it also excluded three actual 

bridge regions,. This is caused by reason that the extracted road 

mask does not always provide true information. The real bridges 

marked as false ones in the verification step are mostly small 

sized bridges which do not show specific orientation 

characteristic in segment analysis. Quantitative precision and 

recall values are given at Table 1. No similar works that show 

quantitative results are found in the literature so we cannot 

compare our results. The thinning method proposed in the 

literature (Luo et al., 2007) is also implemented and tested on 

these example satellite images. Quantitative results were the 

same when the proper width is supplied to the thinning method. 

However, the outcome of the thinning method does not readily 

provide the features of the bridges such as the width of the 

bridge. The proposed method is clearly more successful at 

finding such characteristics of the bridges. Example visual 

results are given at Figure 8. 

      Table 1 Quantitative Results 

Precision Recall 

14/16 14/17 

 

  

  

Figure 8 Bridge Outputs 

4. CONCLUSIONS AND FUTURE WORK 

In this study, an automatic approach for detecting bridges over 

water using high resolution multispectral satellite images is 

proposed. The proposed algorithm starts with identifying water 

regions in the image and extracts the river and water canal 

mask. Using the water mask and river-water canal mask, the 

approach identifies the possible bridge regions in the image. A 

verification step is also proposed for eliminating false bridges. 

Obtained results showed that the proposed algorithm is highly 

scalable and successful at finding bridges of different sizes. 

Possible false identification of bridges is generally caused by 

the false regions of water mask, which are usually due to the 

presence of shadows or roads with low NIR reflectance. It is 

expected that results will be more satisfactory with the usage of 

a more reliable water mask. Presently, the algorithm is 

dependent on the water mask and it is not possible to find 

bridges over dry rivers and water canals. An added module that 

can extract dry rivers and canals would alleviate this problem.  

Proposed approach should also be tested on more and different 

types of satellite images. In this way, a more robust algorithm 

could be obtained.   
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