
The Architecture of an Emergency Plan Deployment System

MARCELO TÍLIO MONTEIRO DE CARVALHO
 1

JULIANA FREIRE
1

MARCO ANTONIO CASANOVA
2

1 {tilio, jufreire}@tecgraf.puc-rio.br
Grupo de Tecnologia em Computação Gráfica / TeCGraf

2 casanova@inf.puc-rio.br
Departamento de Informática

Pontifícia Universidade Católica do Rio de Janeiro
Rua Marquês de São Vicente, 225 - Rio de Janeiro, RJ - Brasil - CEP 22453-900

Abstract. This paper outlines the architecture and early implementation of an emergency plan deployment
system that helps teams of human agents develop and execute comprehensive emergency plans,
hyperlinked to conventional as well as geographical documents. The architecture features six components:
a document database; a plan management module; a resource management module; a geographical
document management module; a conventional document management module; and the plan monitoring
module. Central to the architecture is a simple plan modeling language that helps overcome some of the
limitations of conventional emergency plan description schemes.

1. Introduction

Emergency plans are often expressed as lists of
conditional tasks, some of which may refer to ancillary
documentation, such as maps, simulation results, lists of
authorities to contact, etc. The data is traditionally
compiled into lengthy guides that teams of human agents
access in response to emergency situations.

Information systems designed to help deploy
emergency plans must achieve two important design
goals. First, they must help monitor the execution of
emergency plans, which are carried out by teams of
human agents. Second, they must help organize and
access the often-vast collection of ancillary
documentation.

This paper introduces the architecture of an
emergency plan deployment system that achieves these
two design goals, with improved functionality. The system
features a fully distributed architecture where mobile
devices communicate with fixed sites to: (1) monitor plan
execution; (2) search, retrieve and visualize complex
documents. The system permits designing emergency
plans with a complexity similar to that of PERT diagrams
[MPD83]. Yet, the human agents, working in the field,
will be able to conveniently follow the plan, with the help
of the mobile devices. The system therefore mimics the
cooperative, distributed multi-agent environment typical
of emergency response teamwork.

The implementation of the system will follow a two-
step strategy. The first stage, currently under
development, offers a flexible plan modeling language
and implements plan monitoring in a centralized
environment. The second stage will cover the migration of
the system to a distributed platform that incorporates
mobile computing devices.

The ideas described in the paper represent an
evolution of the InfoPAE System [InfoPAE], designed to
manage and monitor emergency tasks covering incidents
in oil and gas pipelines. The InfoPAE system was
implemented by TecGraf for PETROBRÁS.

FRIEND [BTR94], INCA [IG99] and MokSAF
[LPHLS99] are examples of emergency management
systems. In particular, the MokSAF system supports route
planning by combining AI techniques with GIS. Other
examples of multi-agent systems with internal planning
components are RETSINA [PKPSS99] and HIPaP
[PSS00]. A survey of cooperative multi-agent systems
appears in [Le99] and [FC99] provides an interesting
application of plan generation in the context of databases.

The paper is organized as follows. Section 2 outlines
the architecture of the system. Section 3 introduces the
plan modeling language. Section 4 describes the current
implementation. Section 5 discusses possible extensions
to the language. Finally, section 6 contains the
conclusions.

2. Outline of the architecture

The emergency plan deployment system has six basic
components:

y the document database

y the plan management module

y the resource management module

y the geographical document management module

y the conventional document management module

y the plan monitoring module

The database persistently stores documents that
represent plans, plan frameworks, plan states, resources,
and geographical and conventional data. In addition to
predefined relationships, the database permits
hyperlinking documents as a flexible way to model binary
document relationships.

From the point of view of the database, a plan is just
a complex document recursively built upon other
documents that describe elementary plans, that is,
questions about the current scenario and tasks that must be
performed. As such, a plan, or one of its components, may
be hyperlinked to other documents in the database.

A plan framework, as the name indicates, is a
framework that describes a generic plan scheme that can
be instantiated to generate new plans.

A plan state describes the current state of a plan
execution and is an internal object of the plan monitoring
module.

A resource is any equipment, facility or human agent
that emergency plans need. Typically, resources have a
rich categorization that the database must reflect. For
example, sea fences, used to contain oil spills, have more
than 10 categories.

 The database also stores geographical and
conventional data, such as facility maps, simulation
results, lists of authorities to contact, etc. These
documents provide valuable information to the
deployment of emergency plans and must be readily
available to the human teams.

The plan management module incorporates four tools
to help users create and maintain plans:

y a plan browser to search for plans in the database

y a task editor to create new tasks and relate them to
resources and other documents in the database

y a plan editor to compose more complex plans, using
the plan modeling language or plan frameworks

y a plan framework editor to create, store and reuse
plan frameworks

The resource, the geographical and the conventional
document management modules offer database interfaces
to retrieve, insert and update these types of documents and
need no further comment at this point.

Finally, the plan monitoring module is responsible
for plan execution. It consists of:

y the plan monitoring engine

y the field user module

y the central coordination module

The plan monitoring engine, as the name implies,
monitors the execution of the plan by human agents. It
persistently maintains the current plan state in the
database, interacting with the human agents to register the
progress of tasks contained in the plan (see Section 3.2).

The field user module helps human agents keep track
of the current state of the plan assigned to them. It also
helps them search and retrieve ancillary information
required to execute tasks, locate resources, etc.

The central coordination module is designed to help
the upper management staff keep track of the current
scenario: the current assessment of the situation (as
reported by the human agents), what has been
accomplished, what remains to be done, etc.

The final implementation will feature a distributed
architecture where mobile devices communicate with
fixed sites to monitor plan execution. This implies that the
mobile devices will run the field user interface and will
contain, depending on their capacity, replicas of the
documents required by the tasks.

A mobile device may also run specialized versions of
the resource, the geographical and the conventional
document management modules to help search and
visualize such documents. This opens an array of
possibilities, including voice output synthesis and other
less conventional data rendering techniques.

Section 4 details the current stage of the
implementation, which already covers sophisticated
versions of the plan editor and of the plan monitoring
module.

3. The plan modeling language
Section 3.1 introduces the syntax while Section 3.2

outlines the semantics of the language. Section 3.1 also
intuitively explains the constructs of the language.

3.1 Syntax

The syntax of the language, in BNF notation, is
shown in Figure 1.

An example of a toy plan P is:

(1) P = (Q 1;A 1 \ Q 2;A 2) ; (B 1 // B 2)

where

Q1
 = “Is the oil that spilled heavy?”

A1 = “Stop pump P 1 and close valve V 1”

Q2
 = “Is the oil that spilled light?”

A2 = “Stop pump P 2 and close valve V 2”

B1 = “Call the Port Authority”

B2 = “Call the Facility Manager”

Intuitively, a plan is recursively built out of tasks
using sequential, parallel and alternative compositions.

Although not distinguished in Figure 1, there are
three types of tasks - undeferrable activities, deferrable
activities and tests. Depending on its type, the execution
of a task goes through several states, as described in
Section 3.2, that the human agent in part controls by
sending messages to the system.

An undeferrable activity describes an activity a
human agent must perform. He informs the system when
he starts and when he finishes the activity, by sending
start and finish.

A deferrable activity also permits the human agent to
defer it for later execution, by sending defer, even after he
started the activity. This liberality impacts the semantics
of plans, but it reflects real-world plan modeling
requirements.

A test urges the human agent to check for some the
real-world condition. He can either validate the condition,
by sending finish, or he can reject it, by sending reject.

The sequential composition (P 1;P 2) says that the
human agent must execute P1 before P2.

The parallel composition (P 1//P 2) defines that the
human agent must execute P1 and P2 in parallel.

The alternative composition (P 1\P 2) indicates that
the human agent can execute one of the plans and reject
the other, or that he can execute both.

<plan> ::= <sequential plans> |

<parallel plans> |

<alternative plans> |

 <task>

<sequential plans>

 ::= '('<plan>';'<plan>')'

<parallel plans>

 ::= '('<plan>'//'<plan>')'

<alternative plans>

 ::= '('<plan>'\'<plan>')'

<task> ::= <string>

<string> ::= any string not containing one

of the reserved symbols:

 ";", "//", "\", "(", ")"

Figure 1: Syntax of the plan modeling language

We now define additional concepts that will be used
in Section 3.2.

P is the father of P1 and P2, and P1 and P2 are children
of P, iff P is of the form (P 1;P 2) , (P 1//P 2) or (P 1\P 2).

Q is a component of P iff Q is a child of P or Q is a
component of a component of P.

P1 is a pre-requisite of P2 in plan P iff P has a
component of the form(P 1;P 2) .

The parallel and the alternative compositions are
commutative and all three compositions are associative.
Hence, as an abuse of syntax, we admit expressions of the
form(P 1; ...;P n) , (P 1// ...//P n) or (P 1\ ...\P n).

Tests and the alternative composition are powerful
tools to build plans. However, a less experienced plan
developer may create ill-formed plans that have tests
outside alternative compositions thereby causing plan
components to be rejected without offering alternatives.

For example, if our toy plan P were:

(1') P' = A 1 ; Q 1 ; (B 1 // B 2)

then it would be ill-formed. We do not consider this plan
acceptable for the following reason. Suppose that the
human agent performs the following actions:

• executes A1 ;

• informs that Q1 is false and stops following P'.

Hence, P' will fail after being partly executed, leaving the
effects of A1 visible (i.e., “pump P 1 stopped and valve V1

closed”). By contrast, a well-formed plan would offer an
alternative to Q1 , say, to undo the effects of A1 (i.e.,
“restart pump P 1 and re-open valve V1”) before
abandoning P' .

For this reason, we introduce two new concepts. A
guarded plan is a plan of the form (T 1;P 1\ ...\T n;P n) ,
where Ti is a test and Pi is a plan, for each i∈[1,n]. A plan
P is well-formed iff the only occurrences of tests and the
alternative composition in P are in components of P that
are guarded plans.

Finally, we define a plan framework as a plan, except
that syntactical variables can be used to replace sub-plans.
For example, we may alter (1) to become the plan
framework in (8):

(8) (<t 1>;<a 1>\<t 2>;<a 2>);(<b 1>//<b 2>)

where the symbols enclosed in angular brackets are
syntactical variables ranging over plans.

Intuitively the plan designer will use a plan
framework to create new plans by instantiating the
syntactical variables with plans, possibly selected from the
database.

3.2 Semantics

The semantics of the language clarifies what is a plan
execution. We opted for a semantics that maps a plan into
a set of automata that interact with each other.

The set of automata associated with a plan is
inductively defined in a way that mimics the language
constructs.

In Figure 2, labels in italics represent state transitions
the human agent controls, while labels in boldface
represent those resulting from the interaction among the
automata.

The automata for undeferrable activities, deferrable
activities and tests are shown in Figures 2a, 2b and 2c,
respectively.

The automaton that governs sequential, parallel and
alternative compositions is again that in Figure 2c, except
that all labels are in boldface.

Finally, the automaton for the plan itself is shown in
Figure 2d.

Figure 2: Component Automata.

finish

not-ready

ready

start defer

started

finished

deferred

rejected

start

is-ready reject

(b)

rejected

not-ready

ready

finish

finished

rejectis-ready

(c)

reject

rejected

ready

finish

finished

(d)

reject

finish

not-ready

ready

start

started

finished rejected

rejectis-ready

(a)

defer

We say that a component Q reaches state S iff the
automaton associated with Q changes to state S. The state
transitions are concisely defined as follows:

Any type of component (Figures 2a,b,c):

not-ready to ready -

the father of the component reaches ready; or

the pre-requisite of the component reaches finished or
deferred.

not-ready to rejected - the pre-requisite or the father of the
component reaches rejected.

Undeferrable activity (Figure 2a):

ready to started - human agent sends start.
started to finished - human agent sends finish.

Deferrable activity (Figure 2b):

ready to started - human agent sends start.
ready to deferred - human agent sends defer.
deferred to started - human agent sends start.
started to deferred - human agent sends defer.
started to finished - human agent sends finish.

Test (Figure 2c):

ready to finished - human agent sends finish.
ready to rejected - human agent sends reject.

Sequential composition (P 1;P 2) (Figure 2c):

ready to finished -
Pi reached finished or deferred, for i∈[1,2].

ready to rejected - P1 or P2 reached rejected.

Parallel composition (P 1//P 2) (Figure 2c):

ready to finished -
Pi reached finished or deferred, for i∈[1,2].

ready to rejected - P1 or P2 reached rejected.

Alternative composition (P 1\P 2) (Figure 2c):

ready to finished -

Pi reached finished or deferred, for i∈[1,2]; or
P1 reached finished or deferred and P2 rejected; or
P2 reached finished or deferred and P1 rejected.

ready to rejected - P1 and P2 reached rejected.

Plan (Figure 2d):

ready to finished - the composition, or the task, that
makes up the plan reached finished and no component
of the plan is deferred.

ready to rejected - the composition, or the task, that
makes up the plan reached rejected.

This concludes the description of the semantics.

4. Current implementation

This section summarizes the current implementation
of the plan management and the plan monitoring modules.
The annex contains a sample screen of the current
implementation.

4.1 The Plan Management Module

The current implementation of the plan management
module offers a version of the plan modeling language
that covers only well-formed plans, with some syntactic
sugaring.

The implementation adopts function calls as the basic
mechanism to express the language constructs.

A task A is expressed as a function

(9) function A()

A guarded plan (W1;A 1\ ...\Wn;A n) is expressed with
the help of the Ask function:

(10) Ask(Q,{W 1,...,W n},{A 1,...,A n})

where

Q is any character string, interpreted as a question to be
posed to the human agent

W1,...,Wn is a list of tests that represent acceptable answers
to question Q.

A1,...,An is a list of alternative plans

The human agent may select one or more tests. If he
selects Wi , then he is signaling to change the state of Wi

from ready to finished and, consequently, to select plan Ai

for execution. Hence, we treat Q as syntactic sugar that
can be incorporated into the tests W1,...,Wn.

The parallel composition (A 1// ...//A n) is expressed
with the help of the Do function:

(11) Do(A 1,...,A n)

Likewise, the sequential composition (A 1; ...;A n) is
expressed by a sequence of calls to the Do function:

(12) Do(A 1)
...

Do(A n)

The toy plan P in (1) is then expressed as:

(13) function P()
 Do (P 1)

Do (P 2)
end

function P 1()
 Ask (“What oil spilled?”,

{“Heavy oil”,“Light oil”},
{A 1 , A 2})

end

function P 2()
 Do (B1, B2)
end

where

A1 = “Stop pump P 1 and close valve V 1”

A2 = “Stop pump P 2 and close valve V 2”

B1 = “Call the Port Authority”

B2 = “Call the Facility Manager”

The body of the function that expresses task A may
also include the following function calls:

Show(“S”) , where S is a string.

Associates string S with task A. When task A reaches
ready, string S is shown to the human agent. Exactly
one call to show must occur in the body of
function A() .

AddType(“T”) , where T is a string.

Associates a type T with task A. There can be none,
one or many calls to addtype in the body of
function A() .

AddDoc(“D”) , where D is a file name.

Associates a document, contained in D, with task A.

AddInfo(“C”,“T”) , where C and T are strings.

Associates textual information T with task A and
classifies T in category C (an arbitrary string).

OnStart(F) , where F is a function call.

Associates a function F to be called when task A
reaches started.

Deferrable

Indicates that the task is deferrable.

The string that Show associates with the task should
be a short sentence with concise instructions to the human
agent. More extensive information should be passed using

AddDoc or AddInfo . The current implementation extends
AddInfo to retrieve information from the database,
instead of merely passing textual information as a
parameter.

Note that the types created with the help of AddType
are not related to the three task types introduced in Section
3.1. They simply let the user create his classification for
tasks. The current implementation uses task types, defined
with the help of AddType , to filter the tasks the human
agent has access.

A full example of a task definition is:

(14) function A()
 Show (“Stop pump P 1 and

 close valve V 1”)
 AddDoc (“pump-manual.doc”)

AddDoc (“valve-manual.doc”)
 AddType (“shutdown”)
 AddInfo (“phone”, “2222222”)
 AddInfo (“e-mail”,
 “person@place.com”)

end

The string “Stop pump P 1 and close valve
V1” will then be shown when the task reaches ready. The
files “pump-manual.doc” and “valve-manual.doc”
contain reference manuals the human agent can access.
The task also has two categories of associated textual
information, “phone” and “e-mail” , that indicate, say,
the contact phone number and the e-mail of people that
must be notified when task is executed.

4.2 The Plan Monitoring Module

The plan monitoring module implements the abstract
machine outlined in Section 3.2. It emulates the execution
of a plan P by interpreting the statements of function
P() . The monitor also uses an auxiliary structure that
keeps the state of all tasks in the plan.

For example, consider plan P in (13). The monitor
starts by moving P 1 to the ready state. The human agent
is then posed with the question “What oil spilled?” .
If he selects “Heavy oil” , then the state of this test is
changed to finished and, consequently, the state of A1 is
changed to ready. If, on the other hand, he selects “Light
oil” , then the state of this second test is changed to
finished and the state of A2 is changed to ready.

After the state of A1 (or of A2) changes to finished, the
states of B1 and B2 will both change to ready. The monitor
will then select both B1 and B2, prompting the human
agent to “Call the Port Authority” and to “Call
the Facility Manager” . The human agent may then
execute these instructions in any order.

5. Extensions

We briefly discuss in this section extensions to the
language and to the plan monitoring module.

A task has an implicit duration, which is the time
interval the human agent takes to perform it. Now,
observe that the sequential and the parallel compositions
reflect just two temporal relationships between tasks. For
example, we may relate two tasks by forcing them not to
overlap, or by forcing them to finish at the same time, etc.
Continuing with this line of reasoning, we may redesign
the plan modeling language to incorporate an algebra of
tasks that mimics a time interval algebra [BMN00], or to
follow the style of multimedia presentation languages,
such as SMIL [W3C], that specifies the presentation of
several media objects in time-space.

Plan monitoring can also be extended to account for
backtracking and dynamic plan relaxation. Indeed, the
Ask function can be relaxed to allow the human agent to
go back to a question (a call to Ask) and change his
answer, perhaps to reflect new conditions that developed
during the execution of the plan. This extension requires
changing the semantics of the language to account for
backtracking of plan execution. It may also require
introducing the concept of compensatory tasks to undo
real world activities previously carried out by the human
agent.

6. Conclusions

This paper outlined the architecture of an emergency
plan deployment system that helps human teams develop
and execute comprehensive emergency plans, hyperlinked
to conventional as well as geographical documents.

The current implementation permits experimenting
with the language to model realistic plans, which we are
currently doing in the context of the InfoPAE Project.

Acknowledgements

We wish to thank Antonio Furtado and Angelo
Ciarlini, from PUC-Rio, for their careful reading of an
earlier version of this paper and Angelo Francisco dos
Santos, from PETROBRÁS, for his many contributions to
the ideas expressed in this paper.

References
[BMN00] P. Bellini, R. Mattolini, and P. Nesi. "Temporal
Logics for Real-Time System Specification", ACM
Computer Surveys, Vol. 32, No. 1 (March 2000), 12--42.

[BTR94] B. Bruegge, K. O'Toole and D. Rothenberger,
"Design Considerations for an Accident Management
System". In Proc. of the Conference on Cooperative
Information Systems (1994), 90--100.

[FC99] A. Furtado and A. Ciarlini. “Operational
Characterization of Genre in Literary and Real-life
Domains”. In Proc. of the ER’99 Conceptual Modelling
Conference, Paris, France (1999).

[IG99] W. Iba, M. Gervasio. "Adapting to User
Preferences in Crisis Response". In Proc of Intelligent
User Interfaces (1999), 87--90.

[InfoPAE] Sistema de Informação para Apoio a Planos de
Ação de Emergência. Manual do Usuário. Version 1.1.
TeCGraf, PUC-Rio (2001).

[Le99] V. Lesser, "Cooperative Multiagent Systems: A
Personal View of the State of the Art", Knowledge and
Data Engineering, Vol. 11, No. 1 (1999), 133--142.

[LPHLS99] T. Lenox, T. Payne, S. Hahn, M. Lewis, and
K. Sycara, "MokSAF: How should we support teamwork
in human-agent teams?". Tech. Report CMU-RI-TR-99-
32, Robotics Institute, CMU (1999).

[MPD83] J. J. Moder, C. R. Phillips and E. W. Davis,
Project Management with CPM, PERT and Precedence
Diagramming (3rd. ed.), Van Nostrand Reinhold, New
York (1983).

[PKPSS99] M. Paolucci, D. Kalp, A. Pannu, O. Shehory,
and K. Sycara. A Planning Component for RETSINA
Agents. In Agent Theories, Architectures, and Languages
(1999), 147--161.

 [PSS00] M. Paolucci, O. Shehory, and K. Sycara.
"Interleaving planning and execution in a multiagent
teamplanning environment." Tech. Report CMU-RI-TR-
00-01, Robotics Institute, CMU (2000).

[W3C] World Wide Web Consortium (W3C), SMIL 2.0.
http://www.w3.org/AudioVideo/ (last visited on June 18th,
2001).

Annex - Sample screen from the current implementation

1. The user may select, from the set of tasks that are ready, the subset of all tasks of a given type:
a. Pulldown menu used to choose the desired task type.
b. Panel showing the list of selected tasks.

2. The user may pick up a task from those selected, which will be shown on the top panel.
3. The user clicks on:

a. the button on the left to inform that he started the task, and
b. the button on the right to indicate that he finished the task.

4. The user clicks on this button to add comments to the task in a new window that will pop up.
5. The interface displays a list of predefined icons representing the information categories associated with

the task (via AddInfo).
6. Panel showing any additional information associated with the task (via AddInfo), classified by

category.

3a 3b 1a 2

4

5

6

1b

