Um Controlador Nebuloso Aplicado ao Problema do Pêndulo Invertido

Marcelo Henrique Essado de Morais, Amita Muralikrishna

Programa de Pós-Graduação em Computação Aplicada, CAP/INPE, 12201-970 — São José dos Campos, SP E-mail: marceloessado@gmail.com, amita@dae.inpe.br

Ricardo Bravo, Lamartine Nogueira Frutuoso Guimarães

Instituto de Estudos Avançados – IEAv/CTA 12228-840 – São José dos Campos, SP E-mail: rbravo@ieav.cta.br, guimarae@ieav.cta.br

1. Introdução

A teoria de controles automáticos está cada vez mais integrada a área da computação. Cada vez mais, novos algoritmos e recursos computacionais estão sendo utilizados a fim de realizar os mais diversos tipos de controle. Os sistemas de controle automático são encontrados em abundância em setores da indústria [7], tais como controle de qualidade e fabricação de produtos, linha de montagem automática, controle de ferramentas, tecnologia espacial e de armamento, sistemas de transporte, sistemas de potência, robôs e muitos outros. Dentro deste contexto, o presente trabalho é um estudo da construção de um controlador nebuloso aplicado ao problema do pêndulo invertido, do qual o objetivo é equilibrar o pêndulo na posição vertical através do ajuste de parâmetros físicos, levando em consideração que a teoria de sistemas baseadas em lógica fuzzy proporciona a possibilidade de supervisão inteligente, baseada apenas em informações qualitativas sobre a operação do sistema.

Utiliza-se neste trabalho um simulador para o pêndulo invertido, o qual permite a validação e comparação entre o controlador nebuloso e um controlador convencional de realimentação de estados. A implementação, de cunho didático foi desenvolvida no software MATLAB® - The MathWorks, Inc.

2. Modelo do Pêndulo Invertido

O Pêndulo Invertido é um processo mecânico absolutamente instável, ou seja, está sujeito a cair em qualquer direção a menos que uma força adequada seja aplicada ao carro de suporte da base do pêndulo, acelerando-o em uma determinada direção.

A Figura 1 ilustra o sistema do pêndulo invertido modelado neste trabalho. Como descrito anteriormente, o problema do pêndulo invertido consiste em equilibrar um bastão (pêndulo) na posição vertical, fazendo com que seu ângulo (θ) esteja em zero grau.

A modelagem deste problema é feita em duas dimensões, desta forma, a liberdade de movimento é paralela ao eixo x de um plano cartesiano. Já o pêndulo tem um movimento angular sobre o plano xOy em torno do ponto que é fixado sobre o carrinho. A atuação no sistema para o controle de

equilíbrio vertical do pêndulo, será feita através da aplicação

de uma força restauradora $\overset{
ightarrow}{F}$, no carrinho. Convenciona-se ainda uma força contrária ao movimento do carrinho como sendo a força de viscosidade do meio.

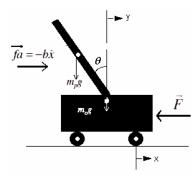


Figura 1: Sistema do pêndulo invertido

A seguir é descrita de forma sucinta a modelagem dinâmica do sistema. Para tanto, serão utilizados os símbolos descritos na Tabela 1.

Símbolo	Descrição	Valor
l	Metade do comprimento da haste do pêndulo (centro de massa)	0,3 m
m_p	Massa da haste	0,5 Kg
m_c	Massa do carrinho	0,5 Kg
b	Coeficiente da força viscosa	0,1 Ns/m
g q	Aceleração da gravidade Ângulo do pêndulo	9.8 m/s^2
W	Velocidade angular do pêndulo	Rad/s
I	Momento de inércia do pêndulo	0,006 Kg/m ²
X	Posição do carrinho	m
t	Instante de tempo	S
v	Velocidade do carrinho	m/s ²

Tabela 1: Relação de símbolos de variáveis e constantes

Para a modelagem, utilizou-se a Mecânica Lagrangeana, chegando a seguinte equação do movimento [1,4]:

$$\frac{d}{dt} \begin{pmatrix} \mathbf{q} \\ \mathbf{w} \\ x \\ v \end{pmatrix} = A \begin{pmatrix} \mathbf{q} \\ \mathbf{w} \\ x \\ v \end{pmatrix} + vet \tag{1}$$

onde,

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & -\frac{\left(\left(m_{p}l\right)^{2} sen\mathbf{q} \cos\mathbf{q}\mathbf{w}\right)}{\det 0} & 0 & \frac{m_{p}lb\cos\mathbf{q}}{\det 0} \\ 0 & 0 & 0 & 1 \\ 0 & \frac{\left(m_{p}l^{2}+I\right)m_{p}lsen\mathbf{q}\mathbf{w}}{\det 0} & 0 & -\frac{b\left(m_{p}l^{2}+I\right)}{\det 0} \end{pmatrix}$$
(2)

$$vet = \begin{pmatrix} -\frac{m_p l \cos \mathbf{q}F}{\det} + \frac{\binom{0}{m_c + m_p} m_p glsen\mathbf{q}}{\det} \\ \frac{\binom{m_p l^2 + I}{\det}F - \frac{\binom{m_p l}^2 gsen\mathbf{q} \cos \mathbf{q}}{\det}}{\det} \end{pmatrix}$$
(3)

$$\det = (m_c + m_p)(m_p l^2 + I) - (m_p l \cos q)^2$$
 (4)

e F é a força restauradora de controle.

3. Controlador Nebuloso

O projeto de sistemas de controle fuzzy é baseado em métodos empíricos e é basicamente uma aproximação metódica para tentativa-e-erro. O processo em geral segue os seguintes passos:

- Especificam-se as variáveis de entrada e saída utilizadas
- Define-se o conjunto de regras
- Determina-se o método de defuzzificação
- Testes para verificação do sistema, ajustando os detalhes conforme o propósito inicial

Um controlador fuzzy pode ser representado pela Figura 2, onde, medidas do ambiente (variáveis de entradas) passam por um processo de fuzzyficação a fim de serem representadas por variáveis fuzzy. Através de um sistema de inferência, a partir de uma base de regras é produzido um valor de saída, representado por uma variável fuzzy de saída. O valor é então defuzzificado a fim de ser representado por um valor preciso a ser fornecido para o ambiente.

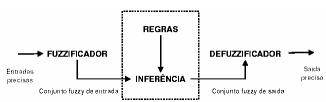


Figura 2: Diagrama de um controlador nebuloso

3.1 Variáveis de Entrada e Saída

No projeto de um controlador nebuloso devem ser determinadas as variáveis relevantes para o sistema e que podem ser medidas (entradas) ou controladas (saídas). Uma vez determinado um conjunto satisfatório de variáveis, torna-se necessário o conhecimento dos intervalos razoáveis, dadas as funções de pertencimento para valores que poderão ser assumidos por estas.

O controlador necessita que estas funções de pertencimento para cada variável sejam definidas, o que permite a fuzzificação ou defuzzificação dos valores. Para tanto, as entradas e saídas devem ser relacionadas através de regras de implicação.

As variáveis de entrada que podem ser medidas e as variáveis de saída que podem ser controladas e que são relevantes para os testes do sistema são:

- Erro do ângulo: varia entre $0 e \pi$
- Derivada da variação do ângulo (velocidade angular): assume-se os mesmos limites de variação do erro do ângulo
- Integral do erro do ângulo
- Erro da posição horizontal: arbitrariamente escolhido entre -100 e +100
- Derivada da posição (velocidade)
- Tempo: não é fuzzificado, relevante somente na discretização
- Força horizontal aplicada (saída)

3.2 Funções de Pertencimento

Os processos de fuzzificação e defuzzificação partem da definição de funções de pertencimento para as variáveis de entrada e saída respectivamente.

Para o controlador em questão são usadas funções triangulares e trapezoidais. Para a força horizontal foram definidas cinco gradações para a função de pertencimento, conforme mostra a Figura 3. O intervalo foi dividido simetricamente em cinco gradações, negativo, pouco negativo, zero, pouco, positivo e positivo. Ainda, para efeitos de testes, foram consideradas outras duas gradações complementares, a negativa e positiva, que cobrem toda a área negativa e positiva, respectivamente.

A Figura 4 mostra o intervalo escolhido para o erro do ângulo, dividido simetricamente em três intervalos e mais dois correspondentes aos extremos, conforme explicado para força.

No caso da derivada do erro do ângulo foram assumidos os mesmo limites, mas as funções de pertencimento do negativo e positivo foram tomadas como trapézios com sua parte triangular concentrada em torno do zero, como mostra a Figura 5. A grande área na qual a função satura-se no 1 é devido a não se desejar grandes velocidades angulares.

Para a posição foram criadas apenas duas gradações, representando o negativo e positivo, no universo de discurso de -100 a +100, mostrado na Figura 6.

Já a derivada e integral da posição não entraram em nenhuma regra e por isso não foram criadas gradações para

tais medições. A integral do erro do ângulo teve universo de discurso assumido igual ao da derivada do erro do ângulo, o que é boa escolha para valores de integral não divergente.

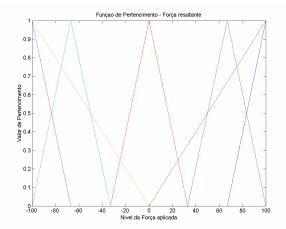


Figura 3: Função de Pertencimento para força horizontal

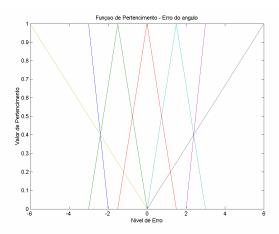


Figura 4: Função de Pertencimento do erro do ângulo

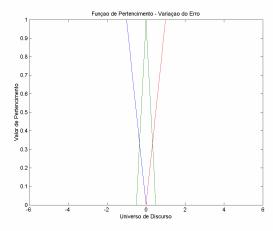


Figura 5: Função de Pertencimento para a derivada do erro do ângulo

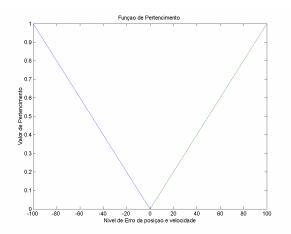


Figura **6:** Função de Pertencimento para o erro da posição e velocidade do carrinho

3.3 Regra de Implicação

O operador de implicação nada mais é do que a interpretação das regras, onde a escolha da regra de implicação é um parâmetro importante, do ponto de vista que é nessa fase que as variáveis lingüísticas são concebidas, conseqüentemente a interpretação *AND*, *OR*, e *ELSE*. O operador de implicação utilizado foi o Produto Larsen, respondendo perfeitamente ao problema proposto. A equação abaixo mostra o produto dos valores de pertencimento:

$$\boldsymbol{f}_{P}[\boldsymbol{m}_{A}(x), \boldsymbol{m}_{B}(y)] \equiv \boldsymbol{m}_{A}(x) \bullet \boldsymbol{m}_{B}(y) \tag{5}$$

onde, $\mathbf{f}_P[\mathbf{m}_A(x), \mathbf{m}_B(y)]$ é a relação de implicação entre as regras aplicadas ao operador Larsen, do qual avalia o produto dos valores de pertencimento obtidos pela interpretação do *ELSE* das regras pelo processo de inferência OR, denotando uma união das relações de implicação para cada regra individualmente [9].

De maneira didática a Tabela 2 descreve as regras referentes aos parâmetros citados no item anterior.

Regra	Descrição	
1	if erroAngulo is Muito Negativo and	
	derivadaAngulo is Negativo then força is Muito	
	Baixa	
2	if erroAngulo is Muito Negativo and	
	derivadaAngulo is Zero then força is Muito Baixa	
3	if erroAngulo is Muito Negativo and	
	derivadaAngulo is Positivo then força is Baixa	
4	if erroAngulo is Pouco Negativo and	
	derivadaAngulo is Negativo then força is Baixa	
5	if erroAngulo is Pouco Negativo and	
	derivadaAngulo is Zero then força is Baixa	
6	if erroAngulo is Pouco Negativo and	
	derivada Angulo is Positivo then força is Zero	

- 7 if erroAngulo is **Zero** and derivadaAngulo is **Negativo** then força is **Zero**
- 8 if erroAngulo is **Zero** and derivadaAngulo is **Zero** then força is **Zero**
- 9 if erroAngulo is **Zero** and derivadaAngulo is **Positivo** then força is **Zero**
- 10 if erroAngulo is **Pouco Positivo** and derivadaAngulo is **Negativo** then força is **Zero**
- 11 if erroAngulo is **Pouco Positivo** and derivadaAngulo is **Zero** then força is **Alta**
- 12 if erroAngulo is **Pouco Positivo** and derivadaAngulo is **Positivo** then força is **Alta**
- 13 *if* erroAngulo *is* **Muito Positivo** *and* derivadaAngulo *is* **Negativo** *then* força *is* **Alta**
- 14 if erroAngulo is **Muito Positivo** and derivadaAngulo is **Zero** then força is **Muito** Alta
- 15 if erroAngulo is **Muito Positivo** and derivadaAngulo is **Negativo** then força is **Muito**
- 16 if erroAngulo is erroNegativo then força is forcaBaixa
- if erroAngulo is erroPositivo then força is forcaAlta
- 18 If velocidade is Negativa then força is Alta
- 19 If velocidade is **Positiva** then força is **Baixa**
- 20 If posição is Negativa then força is Alta
- 21 If posição is **Positiva** then força is **Baixa**

Tabela 2: Regras descritas pelas funções de pertencimento

3.4 Métodos de defuzzificação

Os métodos de defuzzificação utilizados neste trabalho consistem em encontrar o centro de massa do conjunto fuzzy de saída, conhecido como Centro de Áreas (*Center of Área - COA*) e Centro de Somas (*Center of Sums - COS*). O método de COA generalizado para valores discretos é definido como:

$$u = \frac{\sum_{i=1}^{N} \mathbf{m}_{SAIDA}(u_i)}{\sum_{i=1}^{N} \mathbf{m}_{SAIDA}(u_i)}$$
(6)

onde, u_i é a resultante dos valores do universo de discurso para $i = \{1, 2, 3, ..., N\}$.

O método de COS generalizado para valores discretos assume a seguinte equação:

$$u = \frac{\sum_{i=1}^{N} u_{i} \sum_{k=1}^{n} \mathbf{m}_{B_{k}} (u_{i})}{\sum_{i=1}^{N} \sum_{k=1}^{n} \mathbf{m}_{B_{k}} (u_{i})}$$
(7)

onde, $\mathbf{m}_{B_k}(u_i)$ é a função de pertencimento, no ponto u_i do universo de discurso, resultante da k-ésima regra ativada.

4. Resultados

Os resultados obtidos têm por finalidade avaliar o desempenho de um controlador nebuloso, comparando-o ainda com um método de controle clássico, o controlador PID (Proporcional Integral e Derivativo). Para a realização dos testes foi utilizado um Pentium II, com capacidade de processamento de 800 MHz e 264 MB.

Através das regras descritas na Tabela 2 e o método de implicação citado, a Figura 7 mostra a resposta do controlador através do método de defuzzificação COS, com todas as variáveis de estado chegando a zero para 200 segundos de simulação e um tempo computacionais de 668 segundos. Com o método de defuzzificação COA aplicado aos parâmetros anteriores chega-se a valores próximos aos obtidos pelo método COS, porém com uma menor precisão, como mostra a Figura 8. O sistema ainda apresentou maiores oscilações, chegando a um gasto computacional de 3943 segundos, deixando explícito uma dificuldade maior da computação dos dados.

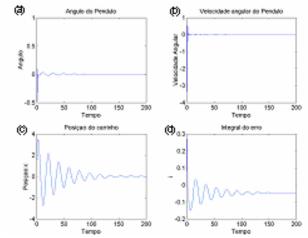


Figura 7: Larsen e COS. (a) ângulo do pêndulo; (b) velocidade angular; (c) posição do carrinho; (d) integral do erro

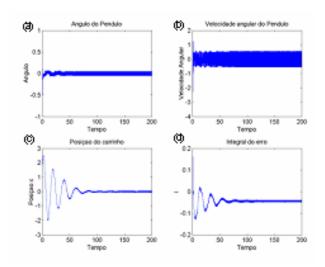


Figura **8:** Larsen e COA. (a) ângulo do pêndulo; (b) velocidade angular; (c) posição do carrinho; (d) integral do erro

4.1 Comparação com PID

Pôde-se observar que o Produto Larsen, principalmente o método de defuzzificação COS teve um resultado satisfatório, tanto para fins de simulação, como de comparação, obtendo êxito na resposta do sistema, ou seja, não só na velocidade e posição do ângulo, como também a posição do carrinho e sua velocidade se mantiveram estáveis, assumindo valores nulos (zeros).

Nos testes realizados com o controle PID [1], através de várias simulações utilizando os mesmos parâmetros de controle e também baseados na tentiva-e-erro, obteve-se um bom conjunto de ganhos do qual o ângulo do pêndulo assumia o valor zero e a velocidade do carrinho um valor muito próximo de zero, como mostra a Figura 8, porém, tais resultados se mostram inferiores aqueles conseguidos com o controle fuzzy, inclusive os valores para o PID deu-se com um tempo de simulação de 1000 segundos, ainda com um deslocamento do carrinho superior ao do controlador fuzzy, ficando clara a distinção entre as duas técnicas de controle.



Figura **9:** Resposta do controle PID, (a) ângulo do pêndulo, (b) velocidade angular, (c) posição do carrinho, (d) velocidade do carrinho.

5. Conclusão

Neste trabalho foram apresentados resultados obtidos através da avaliação do controlador fuzzy para o problema do pêndulo invertido, comparando-o com os resultados do controlador PID [1]. Todos os experimentos foram realizados utilizando uma formulação matemática da dinâmica de comportamento do pêndulo descritas na sessão 2.

O desenvolvimento de controladores para sistemas dinâmicos não-lineares compreende um desafio [7]. Quando procura-se controlar tal sistema, a especificação de um controlador Fuzzy leva uma vantagem considerável, pois tem uma abordagem mais intuitiva, baseada em variáveis e regras lingüísticas. Todavia quando a complexidade do problema aumenta, sua dimensão cresce proporcionalmente, dificultando, de certa forma a definição de regras fuzzy.

As maiores dificuldades encontradas estão relacionadas com a estimação dos parâmetros dos controles, devido a dimensão do sistema. Sendo assim, sugere-se o uso de técnicas de estimação de parâmetros ou abordagem de

problemas inversos, bem como a aplicação de mais variáveis de estado no caso do PID.

Este sistema, da maneira que se apresenta pode ser aplicado a outros domínios de conhecimento, desde que sejam modelados com quatro entradas e uma saída.

6. Referências

- [1] M. H. E. Morais, A. Muralikrishna, R. Bravo, Controladores PID e Nebuloso para o Pêndulo Invertido, Projeto Final, INPE, 2004.
- [2] D. M. Etter, Engineering problem solving with MATLAB, Editora Prentice-Hall, 1993.
- [3] J. W. Hines, Matlab Suplement to Fuzzy and Neural Approaches in Engineering, Editora Jhon Wiley and Sons, New York, 1997.
- [4] L. T. Hoffman, Controlador Nebuloso para o Pêndulo Invertido, Projeto Final, INPE, 2003.
- [5] B. C. Kuo, Sistemas de Controle Automático, Editora Prentice-Hall do Brasil, 1982.
- [6] J. W. Leech, Mecânica Analítica, traduzido por Carlos Campos de Oliveira, Universidade do Estado da Guanabara, Rio de Janeiro, 1971.
- [7] K. Ogata, Modern Control Engineering, University of Minnesota, Prentice-Hall, Inc, 1970.
- [8] R. J. Stonier, A. J. Stacy, Learning Fuzzy Laws for the Inverted Pendulum, Central Old University, Australia, 1998.
- [9] L.H. Tsoukalas, R. E. Uhrig, Fuzzy and Neural Approaches in Engineering, Editora Jhon Wiley and Sons, Inc, New York, 1997.