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ABSTRACT
In this paper we present a unified conceptual framework for the creation of calibrated probability forecasts of observ-

able variables based on information from ensembles of weather/climate model predictions. For the same reasons that
data assimilation is required to feed observed information into numerical prediction models, an analogous process of
forecast assimilation is required to convert model predictions into well-calibrated forecasts of observable variables.

Forecast assimilation includes and generalizes previous calibration methods such as model output statistics and statis-
tical downscaling. To illustrate the approach, we present a flexible variational form of forecast assimilation based on a
Bayesian multivariate normal model capable of assimilating multi-model predictions of gridded fields. This method is

then successfully applied to equatorial Pacific sea surface temperature grid point predictions produced by seven coupled
models in the DEMETER project. The results show improved forecast skill compared to individual model forecasts and

multi-model mean forecasts.

1. Introduction

The challenge of improving forecasts has generated many fas-
cinating areas of research in atmospheric and oceanic science
such as numerical weather prediction, data assimilation, statis-
tical downscaling, single-model ensemble prediction and, more
recently, multi-model ensemble prediction. Tremendous effort
has gone into creating reliable and informative forecasts of future
observable variables given knowledge of observable variables at
earlier times. Such forecasts are inherently probabilistic because
of the uncertainties in environmental data (e.g. measurement
errors and sparse coverage) and structural and parametric uncer-
tainty in numerical prediction models. Well-calibrated probabil-
ity forecasts are required for forecast users to be able to make
optimal decisions.

Recent studies have focused on how best to combine multi-
model climate predictions (Krishnamurti et al., 1999, 2000a,b,
2001; Kharin and Zwiers, 2002; Rajagopalan et al., 2002; Coelho
et al., 2003, 2004; etc.). There are many possible methods for
combining forecasts (see Clemen, 1989, for a review) but no
unique method can be prescribed that is ideal for all the types
of weather/climate forecasting problems. However, there is a
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need to develop a framework that can incorporate the different
approaches for combining weather and climate predictions in
order to provide the most informative forecasts of future observ-
ables. In addition to the issue of how best to combine multiple
predictions, there is also an important issue as to how best to
calibrate the predictions. There are many reasons why model
predictions should not be taken on face value as forecasts of
observable variables (e.g. drift in coupled models that leads to
bias) and so calibration is an important step in obtaining useful
information for forecast users and risk/impact assessments.

In Coelho et al. (2004), we used a simple Bayesian method to
combine single model ensemble predictions with historical em-
pirical data to produce calibrated probabilistic interval forecasts
of a single variable. The method was also used by Coelho et al.
(2003) to assess the skill of various seasonal forecasts of the
Nifio-3.4 index produced at the European Centre for Medium-
Range Weather Forecasts (ECMWEF). In this paper, we generalize
the approach to deal with more than one model and more than
one variable so that useful forecasts can then be produced from
multi-model predictions of spatially gridded fields.

In Section 2 of this paper we introduce a unified frame-
work for the forecasting process and present arguments for the
need for forecast assimilation (FA). In Section 3 we describe
the equatorial Pacific sea surface temperature (SST) predic-
tions (hindcasts) produced by seven different coupled models

253



254 D. B. STEPHENSON ET AL.

Xf
M
pxjly;)
p(Xe)
H-1 X J -1
model space G
p(y;)
observation space
T time 73

—_—
Fig 1. Schematic diagram showing the forecasting process. Time ¢; is
the initial time and time ¢y is the final forecast target time. The evolution
operator (N) in observation space is not known and so numerical
forecasting approximates it by mapping observations into model space,
evolving model states in time in model space via the model operator
(M), and then mapping model predictions from p-dimensional model
space back into g-dimensional observation space. Environmental
forecasting is particularly challenging because of the complexity and
high dimensionality of the model and observation spaces.

employed in the European Union (EU) Framework 5 project
DEMETER! (http://www.ecmwf.int/research/demeter/). In Sec-
tion 4 we show how forecast assimilation can be used to combine
and calibrate the multi-model predictions and we compare the
results to the simpler multi-model ensemble mean approach. In
Section 5 we conclude with a summary and suggestions for pos-
sible future directions.

2. A unified framework for forecasting

2.1. Forecasting process

Figure 1 shows a highly simplified (low-dimensional) schematic
diagram of the forecasting process. It is important to recognize
that observable variables (e.g. temperature at a particular loca-
tion) are not the same mathematical quantities as model grid point
variables. The state vector of the real atmosphere moves dynam-
ically around g-dimensional ‘observation state space’ whereas
the model state vector moves around p-dimensional ‘model state
space’. To initialize models with observations, information in ob-
servation state space has to be mapped into model state space
using a procedure known as ‘data assimilation’ (Daley, 1991;
Courtier, 1997; Bouttier and Courtier, 1999). A set of numerical
model predictions can then be made to produce an ensemble of
possible future model states — a procedure known as ‘ensemble

Development of a European Multi-model Ensemble system for seasonal
to inTERannual prediction.

prediction’ (Palmer, 2000; Stephenson and Doblas-Reyes, 2000,
and references therein).

Itis often falsely assumed that ensembles of model predictions
are probability forecasts of the real world. Model variables are
generally neither representative nor unbiased estimates of site-
specific observable variables. Instead, model predictions should
be considered as proxy information that can be used to infer the
probability of future observables. The skill of forecasts depends
on their ability to discriminate between observable outcomes
(known as forecast resolution; Jolliffe and Stephenson, 2003)
rather than their ability to closely match observations. For ex-
ample, temperature forecasts that distinguish well between hot
and cold days but that are always 20°C too warm are more skil-
ful than less biased forecasts that distinguish less well between
hot and cold days. To make inferences, one needs a probability
model (e.g. a regression model) that can give the probability of
observable quantities when provided with model forecast data.
There needs to be a procedure for mapping the model predicted
state back into observation space. To recognize its analogous
role to data assimilation, we will refer to this important final
step as ‘forecast assimilation’. In the past, forecast assimilation
has been addressed by a wide variety of approaches such as
bias-correction, statistical downscaling, model output statistics
(MOS), perfect prognosis, etc. (Wilks, 1995). As apparent in
Fig. 1, there is a strong duality between data assimilation and
forecast assimilation, which will be elaborated mathematically
in the following sections of this paper.

To summarize, three important steps are needed in order to
find the probability density function p(y¢|y;) of a future observ-
able variable y;: data assimilation to find p(x;|y;), model ensem-
ble prediction to find p(x¢|x;), and forecast assimilation to find
p(y¢|x¢). The desired probability density p(y¢|y;) is obtained by
integrating over model states using a Monte Carlo approxima-
tion (a carefully chosen ensemble). For this to be a good approx-
imation, the initial ensemble states should be sampled from the
distribution p(x;|y;) —a condition not always satisfied in the de-
sign of current operational ensemble systems (Stephenson and
Doblas-Reyes, 2000).

2.2. Conditional probabilities and
Bayesian combination

Whereas data assimilation is concerned with how best to esti-
mate the probability density function of model state x; given
observational data y;, the dual problem of forecast assimila-
tion is concerned with how best to estimate the probability den-
sity of a future observable y; given model prediction data x;.
Both these activities involve the estimation of conditional prob-
abilities: p(x;|y;) for data assimilation and p(y¢|x¢) for fore-
cast assimilation. The resulting distributions are conditioned on
the available data such as observations for data assimilation
and model predictions for forecast assimilation. The identity
known as Bayes theorem shows how to obtain these conditional
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probabilities from the unconditional (uninformed) probability
distributions (Gelman et al., 1995; Lee, 1997). For example,
data assimilation uses

p(yilx) p(xi)
pxily) = —————
()

to update the prior (background) distribution p(x;) to obtain
the posterior distribution p(x;|y;) (Lorenc, 1986; Bouttier and

)

Courtier, 1999). Similarly forecast assimilation uses

Pl = pxelyDp(ye) )
p(x)

to update the prior (climatological) distribution p(y¢) to obtain
the less uncertain posterior distribution p(y¢|x¢) (Coelho et al.,
2003, 2004). Note that initial and final time subscripts are sup-
pressed in subsequent equations. For perfect models with no
prediction errors or for forecast with very short lead times, the
data assimilation equations can be used to perform forecast as-
similation (i.e. perfect prognosis). However, for all other model
predictions containing errors, then forecast assimilation is re-
quired in addition to data assimilation. From this it can be seen
that the true role of ensemble model predictions is to provide
data that can be used to update the probability distribution of the
observable variable from p(y) to p(y|x) rather than to provide
an estimate of the distribution p(x).

2.3. Multivariate normal model

It is useful to briefly review the key equations in data as-
similation. The practical implementation of Bayes theorem re-
quires the specification of a suitable probability model. For the
sake of generality, consider a p-dimensional model space and a
g-dimensional observation space where p, g > 1. The least-
squares estimation used in variational assimilation is equivalent
to maximum likelihood estimation when the p x 1 model state x
and the g x 1 observations given a model state are (multivariate)
normally distributed

X =Xxp,+€p 3)

y = HXx + ¢€g, 4

where the p x 1 vector x, is the background model state (the first
guess) and € g and € ; are (multivariate) normally distributed er-
rors with zero mean and covariances B and R, respectively. The
g x p matrix H is known as the observation or interpolation
operator that predicts observables (e.g. satellite-measurable ra-
diances) from model states (e.g. vertical temperature profiles).
These equations can be written more informatively in probability
notation as follows

x ~ N(xp, B) &)

ylx ~ N(Hx, R), (6)

where ~N(u, ) means distributed as a multivariate normal
distribution with mean p and covariance . By use of Bayes
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theorem (eq. 1), it can then be shown (e.g. Section 4; Bouttier
and Courtier, 1999) that these equations lead to

x|y ~ N(xy, A) @)
with the analysis model state x, and the analysis error covariance
A given by

Xy =xp + K(y — Hxp) (8)
A=({ - KH)B. )

The (p x ¢) matrix K = BHT(HBH" + R)~! is known as the
gain/weight matrix. Therefore, observation data y can be used
to update the background model state xy, to give an improved
analysis estimate x, provided one can estimate matrices B, R
and H. The analysis state x, is the maximum a posteriori (MAP)
estimate (Robert, 2001) that maximizes the probability density
p(x|y). In other words, the MAP estimate x, can be found by
minimizing —2 log p(x|y) which is given up to a constant by

Ty = (x —xp)" B~ (x — xp) + (y — Hx)"R™'(y — Hx). (10)

The quantity J |, is known in variational (e.g. 3-D VAR) data
assimilation as the ‘cost function’ and various sparse matrix al-
gorithms can be used to find the value of x that minimizes this
function.

The equations for forecast assimilation of normally distributed
predictions are the dual of those for data assimilation with x and
y interchanged. One assumes that the observable state and the
model predictions given an observable state are (multivariate)
normally distributed

Y=y tec an

x = G(y — yo) + €s, (12)

where yy, is the background observable state (e.g. the climato-
logical mean value or a persistence forecast) and € and € are
(multivariate) normally distributed errors with zero mean and
background observable covariance C and forecast error covari-
ance S, respectively. For generality, a bias term y, has been
included to take account of the mean bias often found in model
predictions.? The (p x ¢) matrix G is the forecast operator (or
likelihood) that can be estimated by regression of the model pre-
dictions on the observed values. The equations can be rewritten
more succinctly as the following probability models:

y ~ Ny, €) (13)

x|y ~ N(G(y — yo), S). (14)

2A bias term is generally not required for variational data assimilation
because the non-linear observation operator H(x) is linearized about
x=x} to obtain the unbiased equation y'=Hx'+0(x'?) where y' = y —
H(xp) and x'=x—xp.
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Then, Bayes theorem (eq. 2) can be used to show that
ylx ~ N(ya, D) 5)

with the forecast observable state y, and the forecast error co-
variance D given by

Ya =Y + L[x = Gy, — y0)] (16)

D=U-LG)C =(G'S'G+cCc™H™. (17)

The (¢ x p) matrix L = CGT(GCG™ + S)~! is the forecast
gain/weight matrix. Therefore, model prediction data x can be
used to update the background observable state yy(e.g. the clima-
tological mean) to give an improved forecast of the observable
v. provided one can estimate matrices C, S and G and bias vec-
tor yo. The forecast observable state y, is the MAP estimate that
maximizes the probability p(y|x) or alternatively minimizes —2
log p(y|x) given up to a constant by

Sy = (= w)"CHy — )

+[x = Gy — y)I"S7'[x — G(y — »)]. (18)

The quantity J ), is the cost function that needs to be minimized
for forecast assimilation. It is the sum of two penalty terms: one
that penalizes departures y — y}, from the background observable
state and one that penalizes departures x — G(y — yo) from
calibrated model predictions.

2.4. Estimation and the need for dimension reduction

For multivariate normal forecast assimilation, one needs esti-
mates of vectors y, and y, and matrices C, S and G. Vector
vb and matrix C are parameters of the prior observable distribu-
tion y ~ N(yp, C). Reliable estimates of these parameters can be
most simply obtained by calculating the climatological mean and
sample covariance of past observations. More precise estimates
of the prior can be obtained using empirical forecasts (if avail-
able) and so empirical forecasts can be elegantly merged with
numerical model predictions (Coelho et al., 2004). The other
parameters are obtained by performing a multivariate regression
of the model predictions on the observations for a period when
both predictions and observations are available (the calibration
period). For model predictions we will use the seven ensemble
mean forecasts obtained from the seven models rather than 63 (7
x 9) individual forecasts. The slope G, x = 0 y-intercept y,, and
the prediction error covariance S can be estimated using ordinary
least-squares estimation

G =S,5,, (19)
Yo =—F-3GHG(GG)™! (20)
S =S — 84S, SL,. 1

where S, is the (p X p) covariance matrix of the model pre-
dictions, S, is the (g x ¢) covariance matrix of the observ-

ables, and S,, is the (p x ¢g) cross-covariance matrix. Use of
individual forecasts rather than ensemble means for each model
would give the same slope and intercept estimates but would
lead to biased estimates of the prediction error covariance by
failing to take into account the model grouping of the individual
forecasts.

Calibration of gridded forecasts is particularly difficult be-
cause of the large dimensionality of gridded data sets compared
to the number of independent forecasts and the strong depen-
dency between values at neighbouring grid points. When the
matrix S, is poorly conditioned (or even rank deficient, e.g.
when g > n) then the estimation of G = SXyS;yl becomes prob-
lematic (or impossible). Furthermore, for L to be well estimated
then GCGT + S also has to be a well-conditioned matrix. Put
simply, one cannot simultaneously calibrate many predictions if
one has only a small historical record of calibration data. This
problem becomes even worse for multi-model predictions where
the number of grid points is multiplied by the number of models
(e.g. in our example, p =7 x 56 = 392). To avoid this problem,
one can use various multivariate dimension reduction techniques
to reduce the dimensionality of the data sets. Instead of consider-
ing grid point variables, one can project the data on to a small set
of spatial patterns to obtain a small number of indices. For exam-
ple, one could perform principal component regression by using
the leading principal components of the model predictions and
the observations (Derome et al., 2001; Jolliffe, 2002, section 8.4).
Alternatively, one can use either maximum covariance analysis
(MCA, sometimes confusingly referred to as SVD) or canonical
correlation analysis (CCA) to extract leading co-varying modes
from the model prediction and observation data (von Storch and
Zwiers, 1999). An MCA-based regression approach has been
used in previous studies to improve single model seasonal fore-
casts (Feddersen et al., 1999; Feddersen, 2003). In the example
here, we have tested both MCA and CCA dimension reduction
approaches with up to eight retained modes. It was found that
MCA with three modes gave the best cross-validated forecast
scores (see discussion of Fig. 6 at the end of Section 4).

Forecast assimilation was performed as follows.

(1) Inorder to produce cross-validated forecasts on data not
used in the estimation, the year to be forecast was removed from
the data set.

(i) The time mean was subtracted from the remaining ob-
servations and the model predictions to make anomalies stored
in an (n x ¢) data matrix Y of observations and an (n x p) data
matrix X of model predictions (n = 21, ¢ = 56 and p = 392).

(iii) An SVD analysis was performed of the matrix YTX =
UX VT to determine the leading MCA modes.

(iv) Inorder to estimate the prior distribution, the background
observable covariance matrix C was calculated for the £ = 3
leading MCA modes of the observations. The mean of the prior
distribution y, = 0 since we are treating anomalies about the
long-term climatological mean.

Tellus 57A (2005), 3
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(v) A multivariate regression of the k-leading MCA model
prediction modes on the k-leading MCA observation modes was
performed in order to estimate G, y, and S.

(vi) The estimated quantities C, yy, G, yo and S were then
used to forecast the observations on removed year using model
predictions from that year.

2.5. Model output statistics as a special case
of forecast assimilation

In the special case when the prior is estimated over the same
calibration period used to estimate the prediction error covari-
ance S (i.e. no extra information is used to estimate y, or C) then
forecast assimilation gives the same forecasts as obtained by or-
dinary least-squares multivariate regression of the observations
on the predictions

Yy =7+ 8,8, (x —X). (22)

The proof of this can easily be derived by noting that S = S,, —
GS,,G", and so when C = S, one obtains L = S,,G"(GS,,G"
+ Sy — GS,,G")™!, which simply becomes L = S,,S_!. Multi-
variate regression of observations on predictions is the basis of
the MOS approach to calibration that has been used in previous
multi-model studies (Pavan and Doblas-Reyes, 2000; Kharin and
Zwiers, 2002; Doblas-Reyes et al., 2005). Forecast assimilation
incorporates this approach as a special case when the prior is
estimated using only the calibration data. An important differ-
ence in forecast assimilation is that one models the likelihood
by regression of the model predictions on the observables rather
than directly modelling the observables as functions of model
predictions. The likelihood regression in forecast assimilation
minimizes uncertainty in the model predictions for given ob-
servations whereas the MOS approach minimizes uncertainty in
observations for given model predictions. These two approaches
will be compared in Section 4 by estimating the prior over only
the calibration period 19802001 (a MOS approach) and over
the extended period 1958-2001 (a Bayesian approach).

3. Model predictions of Pacific sea
surface temperatures

In this section we present the six-month lead equatorial Pacific
SST predictions produced by the seven coupled models partici-
pating in the DEMETER project.

The DEMETER project has produced an invaluable multi-
model ensemble of global coupled model seasonal hindcasts
(i.e. retrospective forecasts made after the events are observed).
Coupled model hindcasts were produced four times a year us-
ing ERA-40 reanalysis initial conditions starting at 00 GMT on
the first day of February, May, August and November (Palmer
et al., 2004). Nine-member ensembles for each model were pro-
duced by perturbing SST and ocean subsurface initial conditions.
We focus on the longest lead six-month ahead predictions for
the four target months of July, October, January and April, and
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we verify the predictions against the ERA-40 reanalysis SSTs
(loosely referred to as observations). Results will be presented
based on hindcasts produced by the nine-member ensembles
from the seven different coupled models over the common pe-
riod 1980-2001. The seven coupled models were developed by
the following DEMETER project partners: Météo-France (MF),
European Centre for Research and Advanced Training in Sci-
entific Computation (CERFACS), Laboratoire d’Océanographie
Dynamique et de Climatologie (LODYC), ECMWEF, Max-
Planck-Institut (MPI) and the UK Met Office (UKMO).

Figure 2 shows latitude—time Hovmoller plots of SST anoma-
lies along the equator in the Pacific sector from Indonesia to the
west coast of South America (sampled four times a year: Jan,
Apr, Jul, Oct). The observations and model predictions have all
been bi-linearly interpolated on to the same 2.5° x 2.5° grid. The
equatorial Pacific section contains 56 grid points along the equa-
tor running from 140°E to 82.5°W. The observed SST anoma-
lies (Fig. 2a) clearly reveal four major positive anomaly El Nifio
events (1982/83,1986/87,1991/92, 1997 /98) separated by neg-
ative anomaly La Nifia episodes. The individual coupled model
DEMETER ensemble-mean hindcasts are shown in Figs. 2b—h—
anomalies were produced by subtracting the long-term mean for
each calendar month for each of the models. All of the six-month
lead model forecasts capture the gross features of the observed
El Nifio Southern Oscillation (ENSO) events in the Pacific SSTs.
However, more careful inspection reveals that all the models ex-
cept MPI tend to underestimate the peak magnitude of the ENSO
events. Furthermore, the models appear to overestimate the spa-
tial extent of certain El Nifio events such as the event in 1997/98.
With the exception of the MPI model, which shows more vari-
ance than the other models and observations, most of the model
forecasts are rather similar.

Table 1 summarizes the forecasts using statistics calculated
by pooling over all the anomaly data shown in the Hovmoller
plots of Fig. 2. The verification scores were constructed by av-
eraging over all 56 grid points and 88 time points shown in the
Hovmobller plots. With the exception of the MPI model, the model
predictions have similar root mean square error (RMSE) scores
(0.82-0.90). The MPI predictions have more variance and lower
correlations with the observations and this leads to a much larger
RMSE score. Apart from the MPI and UKMO predictions, the
models tend to underestimate the maximum values and overesti-
mate the minimum values compared to observations. The scores
are similar to those obtained for ENSO forecasts using empirical
regression methods (Coelho et al., 2003, 2004).

4. Combined/calibrated forecasts

In this section we present combined forecasts obtained using the
forecast assimilation equations described in Section 2.3.

Figures 3a—d show latitude—time Hovmoller plots of equato-
rial Pacific SST anomalies for observations and three different
combined forecasts.
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Fig 2. Hovmoller plots of Pacific SST anomalies (in °C) along the equator from July 1980 to July 2001: (a) observed anomalies; (b) MF forecasts;
(c) CERFACS forecasts; (d) LODYC forecasts; (e) INGV forecasts; (f) ECMWF forecasts; (g) MPI forecasts; (h) UKMO forecasts.
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Table 1.
gridded anomalies shown in the Hovmoller plots: MIN is the minimum
forecast value, MAX is the maximum forecast value (in °C), RMSE is
the root mean square forecast error (in °C) and BS is the Brier score.

Forecast statistics for the various models based on all the

The Brier score is given for probability forecasts of cold events defined
by anomalies not exceeding zero. The statistics were calculated by
pooling over all the space—time points in the Hovmoller plots. The
Brier score for the observations is that obtained by forecasting the
climatological value of p = 0.5 for each event at each grid point. The
RMSE for the observations is that obtained by forecasting an anomaly

of zero

Model MIN MAX RMSE BS
MF -2.5 34 0.84 0.20
CERFACS -2.5 3.5 0.82 0.20
LODYC -3.0 3.0 0.82 0.22
INGV —-1.7 2.3 0.88 0.22
ECMWF -3.8 3.2 0.89 0.21
MPI —-5.2 9.8 1.46 0.29
UKMO —4.1 5.7 0.90 0.22
Ens. mean —-34 4.4 0.77 0.19
FA 1980-2001 -3.5 4.8 0.75 0.17
FA 1958-2001 3.4 4.8 0.75 0.17
Obs. 1980-2001 2.7 4.5 1.13 0.25

One of the simplest and most naive ways to combine multi-
model predictions is to calculate the ensemble mean X of all
the model predictions (Doblas-Reyes et al., 2003; Kharin and
Zwiers, 2002; Krishnamurti et al., 2001). By comparing the
ensemble mean in Fig. 3b with the observations in Fig. 3a, it
can be seen that the ensemble mean captures the main ENSO
events. However, more careful examination reveals that the peak
magnitudes of the El Nifio events in the ensemble mean forecast
are slightly smaller than those in the observations and the peak
magnitudes of the La Nifia events are slightly larger. With the
exception of MPI and UKMO, the models generally underesti-
mate the magnitude of the maximum anomalies whereas only one
model —Istituto Nazionale di Geofisica e Vulcanologia INGV) —
underestimates the magnitude of the minimum anomalies when
compared to observations (Table 1). This leads to the ensem-
ble mean forecast underestimating interannual variance and the
positive skewness seen in the observations. Underestimation of
skewness in Pacific SST is a known deficiency of many coupled
models (Burgers and Stephenson, 1999; Hannachi et al., 2003).
The reduction in interannual variability is not a necessary conse-
quence of averaging over the model predictions. In the additive
signal plus noise model of Kharin and Zwiers (2002), each of the
model forecasts X; is considered to be the sum of the observed
signal plus some noise, X; =Y + €;, and so the ensemble mean
forecast is then given by X = ¥ 4 ¢ where € is the noise. In
this situation, averaging over the models reduces the variance of
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the noise term but does not reduce the amplitude of the signal
component which varies in time.

Figure 3c shows the combined forecast obtained using the
forecast assimilation equations described in Section 2.3 with the
likelihood and prior estimated over the common period 1980-
2001 (FA 1980-2001). As explained in Section 2.5, this special
case of forecast assimilation is identical to the more traditional
MOS multivariate regression of observations on forecasts. The
combined forecast qualitatively resembles the ensemble mean
forecast, although there are some important differences in sign
in the western Pacific. For comparison, Fig. 3d shows the fore-
cast assimilation forecast where the prior has been estimated
over the extended period 1958-2001 (FA 1958-2001). Figure 3d
closely resembles Fig. 3c, implying that prior information about
observed SSTs does not make a large difference to the results
in this particular example. There is sufficient information in the
calibration period 1980-2001 to provide a good estimate of the
probability density of observed SSTs without the need for more
prior information about the observations. However, prior obser-
vational information will improve the final probability forecasts
in applications where the prior is more informative relative to the
model predictions. For example, in applications where the model
predictions are less skilful or where the prior is more skilful (e.g.
an empirical forecast instead of climatology). From Table 1 it
can be seen that all the combined forecasts have smaller RMSE
than the individual model predictions and that the forecast assim-
ilation forecasts give slightly smaller RMSE than the ensemble
mean forecasts. Furthermore, the combined forecasts give mini-
mum and maximum values that are in closer agreement with the
observations than those obtained for individual models.

Optimal decision-making requires an estimate of prediction
uncertainty in addition to a forecast of the mean. Prediction un-
certainty & is the before-the-event prediction of the RMSE of
the forecast. When accurately estimated, the long-term mean
prediction uncertainty should equal the standard deviation of
the forecast errors. The prediction uncertainty for the ensem-
ble mean forecasts is the standard deviation of the seven model
ensemble mean forecasts. This naive approach will be adopted
here, although it is likely to give an underestimate of the true pre-
diction uncertainty due to dependency between different model
forecasts. The prediction uncertainty for the forecast assimila-
tion forecasts takes account of some of the model dependency
by using the square root of the diagonal elements of matrix D
(eq. 17). One of the big advantages of the forecast assimilation
approach over the ensemble mean approach is that it is capable
of giving more realistic prediction intervals and hence (as will
be shown) more reliable probability forecasts.

To test the skill of probabilistic forecasts, we have taken the
simplest case of the binary event defined by when observed
SST anomalies at each grid point are less than or equal to
zero (Fig. 3e). For each type of combined forecast, we have
used the predicted forecast mean and uncertainty to calculate a
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Fig 3. The upper four panels show Hovmoller plots of Pacific SST anomalies (in °C) along the equator from July 1980 to July 2001: (a)
observations; (b) multi-model ensemble mean forecast; (c) the forecast assimilation forecast with prior estimated over 1980-2001; (d) the forecast
assimilation forecast with prior estimated over 1958-2001. The lower four panels show the binary event defined by when the observed SST anomaly
is less than or equal to zero (grey shading in panel e), and the corresponding probability forecasts for the binary event based on the multi-model
ensemble mean and standard deviation (panel f), forecast assimilation with the prior from 1980-2001 (panel g), and forecast assimilation with the
prior from 1958-2001.
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probability for the anomaly being less than or equal to zero
0— a
p = Prob(y, < 0) = ® (—y> , 23)
6

where ®(z) is the area under the standard normal curve to the
left of z. Note that the probability forecast depends on both the
forecast of the mean y, and the forecast of the prediction uncer-
tainty 6. These probability forecasts are shown for the combined
forecasts in Figs. 3f-h. Note that the forecast assimilation but not
the ensemble mean probabilities are attempting to forecast cor-
rectly the reversed events visible to the west of the date line at
180° in Fig. 3e.

The skill of the probability forecasts has been assessed us-
ing the well-known Brier score (Wilks, 1995; Jolliffe and
Stephenson, 2003). Brier scores for the three combined fore-
casts have been calculated by pooling over all the space—time
points in the Hovmoller plots and are given in Table 1. With
the exception of the MPI model, all forecasts have smaller Brier
scores than 0.25 and so are more skilful than climatological fore-
casts that always issue p = 0.5. The relative improvement of the
Brier scores compared to the no-skill Brier score for climatology
appears small, but this is a common feature of the Brier score
known to occur for even quite skilful forecasting systems. The
three combined forecasts have smaller Brier scores than any of
the individual models, and so combination has improved the skill
of the probability forecasts. The forecast assimilation forecasts
have the smallest Brier scores and so provide the most skilful
probability forecasts. The use of prior information from 1958-
2001 rather than 1980-2001 has little effect on the Brier score
of the forecast assimilation forecasts.

To investigate the improvement in the Brier score, Fig. 4 shows
the Brier score and its resolution and reliability components as
a function of longitude (see Wilks, 1995, p. 262, for a defini-
tion and interpretation of Brier score components). Figure 4a
shows that the forecasts have the smallest Brier scores of around
0.1 and therefore have the most skill in the central Pacific. The
Brier scores are smaller than the score of 0.25 obtained for cli-
matological forecasts with p = 0.5. To the west of the date
line, the forecast assimilation score is markedly smaller than the
ensemble mean score, which is worse here than the score for
climatology. The forecast assimilation score is also slightly less
than that of the ensemble mean forecast eastwards of 130°W.
Figure 4b shows that the improvement in the western Pacific is
due to an improvement in the reliability of the forecasts. As can
be noted from Figs. 3e-h, the ensemble mean fails to capture the
reversed sign of the events in the western Pacific, whereas the
forecast assimilation forecasts are able to capture this behaviour.
A possible cause for the westward displacement of the forecast
anomalies is that cold upwelling biases in four of the models (not
shown) suggest that these models may have excessively strong
easterly winds. Figure 4c shows that the resolution of the com-
bined forecasts is similar, although there is evidence of slightly
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Fig 4. The Brier score and its components as a function of longitude
for the multi-model ensemble (solid line) and forecast assimilation
(dashed line) probability forecasts of negative SST anomaly events: (a)
the Brier score; (b) the reliability component; (c) the negated resolution
component. The reliability and negated resolution components were
estimated at each longitude using 10 equally spaced probability bins
from O to 1. The Brier score is the sum of the reliability, negated
resolution, and uncertainty (close to 0.25 at all longitudes) terms.
Smaller values indicate more forecast skill.
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Fig 5. Scores of FA 1958-2001 cross-validated forecasts versus the
number retained modes for MCA (solid line) and CCA (dashed line)
data reduction: (a) mean square error (in °C); (b) Brier score. Scores
are calculated using all longitude and time values in the Hovmoller
plots shown in Figs. 3d and 3h.

improved resolution in the forecast assimilation forecasts in the
eastern Pacific (east of 135°W).

In order to show how dimension reduction affects the depen-
dency of the skill of the combined forecast, Fig. 5 shows the
RMSE and Brier scores for cross-validated combined forecasts
as a function of the number of retained modes. For less than five
modes, MCA outperforms CCA by producing forecasts with
smaller RMSE and Brier scores. The CCA modes are generally
noisier both spatially and temporally than the MCA modes. For
more modes, MCA and CCA lead to similar forecast scores. The
smallest RMSE and Brier score are obtained using MCA with
three modes and the scores are not highly sensitive to the addi-
tion of more modes. The three leading MCA modes consist of
a basin-wide pattern, an east—west dipole over the central-east
equatorial Pacific basin, and an east—west basin-wide dipole (not
shown). A large fraction of the squared covariance between ob-
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Fig 6. Scatter plots of combined forecasts versus observed SST

anomalies (in °C): (a) ensemble mean forecast; (b) forecast
assimilation combined forecast using data from 1958-2001.

servations and model predictions (99.7%) is explained by the
three leading MCA modes.

Figure 6 shows scatter plots of the combined forecast SST
anomalies versus the observed SST anomalies for (a) the ensem-
ble mean forecasts and (b) the 1958-2001 forecast assimilation
combined forecasts. The cloud of forecast assimilation forecasts
lies much closer to the line y = x than does the cloud of ensemble
mean forecasts. Some positive skewness can also be discerned
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in the scatter plots (i.e. more positive anomaly points) caused by
the inherent positive skewness in eastern equatorial Pacific SSTs
(Burgers and Stephenson, 1999; Hannachi et al., 2003). A more
sophisticated forecast assimilation model could be developed
to take account of this deviation from normality. The string of
outlier points at warm temperatures are caused by warm ENSO
events such as the 1997/98 event extending across the equatorial
Pacific.

5. Conclusion

In this paper we have developed a unifying framework for the
production of calibrated probability forecasts of observable vari-
ables from multi-model ensemble predictions. In analogy with
data assimilation, the concept of forecast assimilation has been
introduced. Forecast assimilation is an inherently Bayesian pro-
cedure for making improved forecasts of observable variables
based on information provided by model predictions. It incor-
porates many previous techniques such as MOS and statistical
downscaling as special cases.

Forecast assimilation has been demonstrated by successful
application to DEMETER multi-model equatorial Pacific SST
predictions. The resulting combined forecasts reproduce well
the temporal and longitudinal variations observed in equatorial
Pacific SSTs. In this example, the combined forecast of the mean
resembles the multi-model ensemble forecast of the mean. The
ensemble mean works well in this case because the majority
of the model predictions are for the most part rather similar to
one another and closely resemble the observations. Applications
with more disparate model predictions are likely to show en-
hanced skills for the combined forecast compared to the simple
approach based on equal-weight averaging the ensemble mean
predictions. The prediction uncertainty estimated by forecast as-
similation is larger and more realistic than the prediction uncer-
tainty estimated by the standard deviation of the ensemble-mean
model predictions. It is important for risk assessment purposes
that climate forecasts are able to provide good estimates of fore-
cast uncertainty in addition to providing forecasts of the mean.
The approach is easily applied to two-dimensional gridded data,
and recent results demonstrate that forecast assimilation works
well at reproducing spatial variations in South American rainfall
anomalies (work in progress).

Data assimilation and the example of forecast assimilation
here assume that the data are normally distributed and treat grid-
ded fields as multivariate vectors instead of taking account of the
spatial nature of the data sets. It would be interesting in future
studies to extend the methods to non-normally distributed data
and to develop flexible functional methods that can exploit the
smoothness of the spatial fields as an additional constraint. There
is also scope for improving forecast assimilation by including
state-dependent ensemble spread information in the estimation
of the prediction error covariance matrix S. Another interesting
avenue for future research would be to develop forecast assim-
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ilation approaches that use knowledge of the data assimilation
operator H to help estimate G.

Forecast assimilation is an inherent yet often poorly treated
aspect of the forecasting process and it is our hope that this paper
will stimulate more coordinated activity in this area for weather
and climate predictions on all lead times.
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