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ABSTRACT

This study presents a new simple approach for combining empirical with raw (i.e., not bias corrected) coupled
model ensemble forecasts in order to make more skillful interval forecasts of ENSO. A Bayesian normal model
has been used to combine empirical and raw coupled model December SST Nifio-3.4 index forecasts started at
the end of the preceding July (5-month lead time). The empirical forecasts were obtained by linear regression
between December and the preceding July Nino-3.4 index values over the period 1950-2001. Coupled model
ensemble forecasts for the period 1987-99 were provided by ECMWF, as part of the Development of a European
Multimodel Ensemble System for Seasonal to Interannual Prediction (DEMETER) project. Empirical and raw
coupled model ensemble forecasts alone have similar mean absolute error forecast skill score, compared to
climatological forecasts, of around 50% over the period 1987-99. The combined forecast gives an increased
skill score of 74% and provides a well-calibrated and reliable estimate of forecast uncertainty.

1. Introduction

The El Nino-Southern Oscillation (ENSO) is an im-
portant large-scale ocean-atmosphere coupled phe-
nomenon that has large impacts on the climate of many
regions around the world (Horel and Wallace 1981;
Stoeckenius 1981; Ropelewski and Halpert 1986,
1987, 1989). Since the strong El Nifio episode in 1982/
83, many efforts have been made to produce routine
forecasts of tropical Pacific sea surface temperatures
(SST). Long-lead forecasts several months in advance
help local governments and industries plan their ac-
tions prior to the occurrence of the phenomenon (Patt
2000).

ENSO forecasts are currently produced using either
physically derived dynamical climate models or empir-
ical (statistical) relationships based on historical data.
For a comprehensive review of ENSO forecasting stud-
ies developed during the last two decades see Mason
and Mimmack (2002). The comparative skill of these
two approaches is a subject of much debate (Berliner
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et al. 2000b). Recent forecast comparisons suggest that
empirical models perform at least as well as dynamical
coupled models (Barnston et al. 1999; Anderson et al.
1999). Some studies argue that empirical models per-
form better (e.g., Landsea and Knaff 2000), while other
studies claim that dynamical climate models can give
better ENSO forecasts (e.g., Trenberth 1998).

For both medium-range and seasonal forecasts, it is
common practice to use the ensemble technique to cope
with the probabilistic nature of the forecasts (e.g. Stock-
dale et al. 1998; Taylor and Buizza 2003; Palmer et al.
2004). However, using only model produced forecast
information ignores all prior (historical) knowledge and
is prone to model systematic errors. At this point it is
worth stressing the distinction between climate model
outputs and observed climate/weather. Climate model
outputs should not be treated as observed climate be-
cause they contain model structural and parametric er-
rors, which should be corrected by calibration against
observations.

Given these two distinct approaches to forecasting, it
is natural to ask whether combining them may produce
a forecast with more skill than either forecast considered
separately. Thompson (1977) was one of the first to
show that a simple linear combination of two indepen-
dent 24-h weather predictions, obtained by minimizing
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the mean-square error of the combined forecast, could
reduce the forecast error variance by about 20%. Frae-
drich and Leslie (1 987) also noted that by linearly com-
bining stochastic short-range forecasts with dynamical
model weather predictions it was possible to obtain sig-
nificantly better prediction skill. Fraedrich and Smith
(1989) then extended this approach to seasonal forecasts
with lead times of up to 3 months. They linearly com-
bined an empirical forecast with a deterministic model
forecast for predicting tropical Pacific SST anomalies.
It was shown that by minimizing the combined forecast
mean-square error considerable improvement in skill
can be obtained. More recently, Metzger et al. (2004)
have extended the Fraedrich and Smith (1989) combi-
nation scheme to predict Nifio-3 index (5°N-5°S, 90o-
1 50°W) anomalies for lead times up to 24 months. They
found that the linear combination of empirical and de-
terministic forecasts can provide improvement in pre-
diction skill if the predictions of individual schemes are
independent and of comparable skill. However, only
modest skill improvements were found. Krishnamurti et
al. (1999, 2000a,b, 2001), Pavan and Doblas-Reyes
(2000), and Stefanova and Krishnamurti (2002) have
introduced the multimodel method for combining dy-
namical weather and climate forecasts. The multimodel
method linearly combines ensemble forecasts from dif-
ferent models by minimizing the mean-square error of
the combined forecast. It has been demonstrated that the
multimodel invariably outperforms any of the individual
models.

From this brief review, it is clear that there is still a
need for more research into how to produce well-cali-
brated combined forecasts. The aim of this study is to
introduce a simple Bayesian approach and to demon-
strate it by using monthly Nino-3.4 index (5°N-5°S,
120°-170°W) forecasts at a 5-month lead time. One par-
ticular advantage of this method is that it merges valu-
able past (historical) information with coupled model
ensemble forecasts to produce better quality probability
estimates of the mean forecast value and its respective
uncertainty.

The Bayesian approach has been discussed for de-
cision making in applied meteorology by Epstein (1962)
and for statistical inference and prediction in climatol-
ogy by Epstein (1985). It has also been successfully
used in other areas such as hydrology (e.g., Krzyszto-
fowicz 1983; Krzysztofowicz and Herr 2001) and re-
cently in climate studies (e.g., Berliner et al. 2000a,b;
Rajagopalan et al. 2002). As pointed out by Mason and
Mimmack (2002), ENSO forecasts are usually issued in
deterministic terms and very little attention has been
directed to careful estimation of forecast uncertainty.
This study treats ENSO forecasts in probabilistic terms,
with particular attention directed to the estimation of
prediction uncertainty. For this particular application,
Nifio-3.4 index interval forecasts are used to summarize
the mean and the variance of the predicted normal dis-
tribution.
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FIG. 1. Reynolds optimum interpolated Dec 1950-2001 Ninio-3.4
SST index time series in 'C. The short-dashed line is the climato-
logical mean for this period, 26.50 C.

Section 2 introduces the empirical and coupled model
ensemble forecasts of the Nifio-3.4 index used in this
study. Section 3 describes the Bayesian method used to
combine the forecasts, and section 4 presents results of
the combined forecasts. Section 5 concludes the article
with a summary and a discussion of possible future areas
for research.

2. Empirical and coupled model ensemble
forecasts of ENSO

These methods here will be demonstrated using 5-
month lead forecasts of the December mean Ninio-3.4
index starting from conditions at the end of the preced-
ing July. Empirical and coupled model ensemble fore-
casts available over the T = 13-yr period (1987-99)
have been used. This short record is typical of the length
of datasets produced by most of the world's climate
prediction centers. Details concerning datasets and fore-
cast lead times are given in appendix A. Figure I shows
the historical (1950-2001) December Nifio-3.4 index
time series. The largest El Niuo (1972, 1982, and 1997)
and La Nifia (1970, 1973, 1988, and 1998) events can
be clearly seen.

a. Empirical forecast of ENSO

1) THE EMPIRICAL MODEL

The simplest 5-month lead empirical model for fore-
casting the December mean Nifio-3.4 index uses linear
regression with the preceding July mean Nifio-3.4 index
historical time series as the linear predictor. That is, 0,
= /3 + 3 qv, + s,, where 0, and qi, are the December
and July Nifio-3.4 monthly mean values, respectively;
It, and )3, are the intercept and slope parameters, re-
spectively; a, is a "normal" (Gaussian) random variable
with zero mean and variance a?2 [i.e., a, - N(0, (J2)];
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FIG. 2. Scatterplot of Jul vs Dec Nino-3.4 index (°C). The solid
line is the 1950-2001 linear regression model (g30 = 14.14°C, /3
= 1.50, R

2
= 0.76).

and t is the year being forecast. This model can be
written more explicitly in probabilistic notation as

0, I t, - NY,a,l, So) (1)

with the mean given by

A,, = go + /3, ,, (2)

that is, a linear function of the predictor i,. The standard
statistical symbol I denotes "given" (conditional upon)
and - denotes "is distributed as."

Figure 2 shows a scatterplot of the December versus
the preceding July Nifio-3.4 index for the period 1950-
2001 (N = 52 observations). The linear regression fit
is indicated in Fig. 2 as a solid line. A large amount of
the total variance of December is explained by the pre-
ceding July Nino-3.4 index (R2

= 0.76). This empha-
sizes the importance of persistence for forecasting the
Nifio-3.4 index.

2) EMPIRICAL MODEL CROSS VALIDATION

To avoid artificial skill, the empirical model has been
evaluated using a cross-validation "leave one out"
method (Wilks 1995, his section 6.3.6). To produce a
forecast for time t, only data at other times (years) dif-
ferent than t have been used to estimate model param-
eters and errors.

Figure 3a shows empirical forecasts for the target
period 1987-99 (thick line), observed values (thin line),
and the December climatological mean of 26.5°C (short-
dashed line). The 95% prediction interval (P.1.) for 0,
given +, is also shown (gray area surrounded by long-
dashed lines). The 95% prediction interval is defined
by

1.96,, (3)

where a,f, = B,, + ,B, q, is the Ninio-3.4 index predicted

a) Empirical forecast
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time (years)

b) Standardized forecast error
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FIG. 3. (a) Dec 1987-99 Nifio-3.4 index empirical forecast (°C).
Observed values (thin solid line), forecast (thick solid line), and the
95% RI. (dashed lines). The short-dashed line is the Dec 1950-2001
climatological mean (26.5°C). (b) Standardized forecast error.

mean for a particular December and ,,, is the predicted
standard deviation given by

I ( ifr, q 1_ , ) 2 ] 1

6-0, = 6-01I l+ - + C (4)

where n = N - I is the total number of years used in
the cross validation, ,r, = 1/n X,, qs- is the long-term
climatological mean of the July Ninio-3.4 index, S2 =
1/n Xi*, [fr, - 4,]2, and CO = [1/(n - 2) Xi¼, (0,-

I-k )2]112 is the estimated empirical model standard de-
viation (see Draper and Smith 1998, their section 3.1).

Equations (3) and (4) show that the smallest predic-
tion interval is obtained when the predictor equals its
mean value _ , = i,. On the other hand, by moving
away from 4', in either direction the prediction interval
increases. The greater distance a particular July Niino-
3.4 index (qi,) is from the climatological mean value
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(tf,), the larger is the extrapolation error made when
predicting the following December Ninio-3.4 index (0,).
However, the use of Eq. (4) compared to 6-,, = &- leads
to only small changes in practice in the prediction in-
terval, because the S2 term in the denominator is pro-
portional to the sum of n terms of the same magnitude
as the term (4', - 4,)2. The most precise predictions
are obtained for the July Nifio-3.4 index values in the
"middle" of the observed range of tp,, while for more
extreme values farther away from the climatological
mean, predictions are less precise.

Figure 3a shows that the empirical forecast prediction
interval does not vary much from year to year, indicating
stability of estimates such as 6-a. This simple model
provides good forecasts, especially for the 1988 and
1998 La Nifia episodes and for the 1997 El Nifio epi-
sode. Out of the 13 yr the model has only once (in 1987)
forecast the Nifio-3.4 index outside the 95% P.I. Mea-
sures of forecast skill and uncertainty will be discussed
in more detail in section 4.

Figure 3b shows the time series of the standardized
forecast errors

IL 0= ,,- 0,
a0,

(5)

where ,u,,, is the forecasted mean, 0, is the observed
value, and r,,, is the prediction standard deviation at
time t. If this empirical model is appropriate, the stan-
dardized forecast errors should be distributed as inde-
pendent normally distributed random variables with
zero mean and unit variance. This appears to be the case
from Fig. 3b. Although some slight sign of serial cor-
relation may suggest the need of future model exten-
sions, the standardized forecast errors appear to have
constant variance and are well centered on zero with no
obvious large outliers. The periods 1988-90 and 1997-
98 have small standardized errors, while 1987, the pe-
riod 1991-96, and 1999 have larger standardized errors.
The largest standardized forecast error occurred in 1987.

b. Coupled model ensemble forecasts of ENSO

Figure 4a shows the European Centre for Medium-
Range Weather Forecasts (ECMWF) raw (i.e., not bias
corrected) coupled model ensemble forecasts for the
same period. The ensemble mean of the ensemble of
nine forecasts is shown as a solid thick line. The 95%
P.I., given by the ensemble mean plus or minus 1.96,
the standard deviation of the ensemble forecasts (s,), is
represented by the gray shading. The thin line shows
the observed values of NiAo-3.4 and the short-dashed
line is the December climatological mean of 26.5°C.
The ensemble system tends to underestimate the Nifio-
3.4 index and the width of the 95% P.I. is unrealistically
smaller than the width of the 95% P.I. of the empirical
forecast. Quantitative comparisons of skill and uncer-
tainty of the empirical and raw coupled model forecasts
will be discussed in section 4.

a) Raw coupled model ensemble forecast
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Fio. 4. (a) Dec 1987-99 Niiio-3.4 index raw coupled model en-
semble forecast (°C). Observed values (thin solid line), forecast (thick
solid line), and the 95% P.I. (dashed lines). The short-dashed line is
the 1950-2001 Dec climatological mean (26.5°C). (b) Standardized
forecast error.

Figure 4b shows the standardized forecast errors for
the ECMWF raw coupled model ensemble forecast.
Standardized forecast errors [Eq. (5)] were obtained by
dividing the forecast error by the standard deviation of
the nine coupled model forecasts for each year. These
forecasts show a clear negative bias toward cooler Nifio-
3.4 values. Biases are well-known features of coupled
model seasonal forecasts (e.g., Stockdale 1997). The
year 1991 produced one of the largest standardized fore-
cast errors due to having a large forecast error and a
small ensemble standard deviation.

3. Bayesian method for combining forecasts

The Bayesian method is a consistent probabilistic ap-
proach that can be used for combining historical (cli-
matological) information (0) with dynamical model en-
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FIG. 5. Prior distribution (short-dashed line), likelihood (dashed
line), and posterior distribution (solid line).

semble mean forecasts (X). The Bayesian method is firm-
ly based on rigorous probability theory and so can pro-
vide well-calibrated probability forecasts.

With no access to a coupled model ensemble mean
forecast X, the only possible probabilistic assessment
about the observable variable 0 has to be based on the
assumption that future values of 0 will behave like they
did in the past. For example, the probability distribution
of 0 can be estimated by using the climatological prob-
ability density function p(O) estimated from historical
observations. In Bayesian theory, p(0), is known as the
prior distribution and encapsulates prior knowledge
about likely possible values of 0-from past experience
not all values of 0 were found to occur equally likely.
A more informative prior is the empirical model defined
in section 2a.
_ However, when a particular ensemble mean forecast
X = x is known for the future, it is then possible to
update the prior p(O) to obtain the conditional posterior
distribution p(O I X = x). In other words, this is the prob-
ability distribution of 0 given that the forecast X = x is
known. Conditioning on forecasts helps to reduce the
uncertainty about future values of 0 (Jolliffe and Ste-
phenson 2003, their chapter 9). This procedure is illus-
trated schematically in Fig. 5. The normal prior proba-
bility density (short-dashed line) when combined with a
normal likelihood probability density (dashed line) yields
a normal posterior probability density (solid line). The
posterior distribution p(0 I X = x) is found from the prior
p(0) by making use of Bayes' theorem:

likelihood prior
posterior lL m

p(0,l X, = x) = p(X, - xI,)p(0,) (6)
p (X, = x)

where 0, is the observable variable at time t and x is a
particular value of ensemble mean forecast at time t.
Note that both the posterior distribution and the like-

lihood function are considered to be functions of 0,
Finally, p(X, = x) does not depend on 0, and therefore
only plays the role of a normalizing constant (Lee 1997)

The likelihood p(X I 0) of obtaining an ensemble
mean forecast X given observations 0 is an essential
ingredient in the Bayesian updating procedure that car
be estimated by stratifying past ensemble mean forecast5
(hindcasts) on past observations. The likelihood pro-
vides a convenient summary of the calibration and res-
olution of past forecasts (Jolliffe and Stephenson 2003).

The Bayesian approach has several important advan-
tages over approaches that rely solely on sampling en-
sembles of coupled model forecasts (e.g., Stockdale el
al. 1998; Taylor and Buizza 2003). First, the Bayesian
approach appropriately incorporates prior information
about the distribution contained in historical observa-
tions (i.e., combination). Second, the likelihood esti-
mation provides a natural way of correcting for biases
in the model forecasts that often occur in coupled model
systems (i.e., calibration). Third, the resulting well-cal-
ibrated posterior distribution allows one to generate an
arbitrarily large sample (a megaensemble) of possible
climate realizations, of use for example in scenario stud-
ies of risk and forecast value (Jolliffe and Stephenson
2003, their chapter 8). It should be noted that, even for
perfect forecasts, ensembles of model forecasts are not
realizations of real climate-climate forecasts are var-
iables in model space not in observation space. Climate
model forecasts are generally not perfectly calibrated
(although some models may produce well-calibrated
raw forecasts) and contain uncorrected forecast errors.
Ensemble forecast variances, for example, are likely to
either underestimate or overestimate posterior uncer-
tainties. In summary, ensemble spread does not gen-
erally explain all the forecast uncertainty and ensemble
relative frequency does not perfectly estimate the prob-
ability of climate.

The Bayesian method has three main steps: (i) choice
of the prior distribution, (ii) modeling of the likelihood
function, and (iii) determination of the posterior distri-
bution. For simplicity, it has been assumed in this study
of Nifio-3.4 that both prior and likelihood distributions
are normal (Gaussian). The Nifio-3.4 index has already
been demonstrated to be well approximated by the nor-
mal distribution (e.g., Burgers and Stephenson 1999;
Hannachi et al. 2003).

a. Choice of the prior distribution

The empirical model based on preceding July values
of the Ninio-3.4 index defined in section 2a

0 - N(g 1, o-%), (7)

where A,., is estimated using ,/o, = P, + :,: , and o-,
is estimated using Eq. (4), provides an informative and
straightforward prior distribution. More sophisticated
empirical models could be used in future studies.

I'\
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FIG. 6. Dee 1987-99 Nino-3.4 index likelihood model (0

black dot is one ensemble member. Big open circles are
means. The solid line is the regression between raw ensemb
and observations (& = 6.24TC, = 0.75, R2 = 0.95). Th
line is what would be obtained for perfect forecasts.

b. Modeling of the likelihoodfunction

Figure 6 shows a scatterplot of raw coupled

ensemble forecasts versus the observed Decembe

3.4 index for the period 1987-99. Ensemble me

depicted using large open circles. The dashed

what one expects for perfect forecasts in which tl

cast values are identical to the observed valui
likelihood p(X, I 0,) is modeled by performing a'

ed linear regression between the ensemble me,

casts (X,) and matching observations (0,):

X, I 0, - N(a + 30J,, yV,),

where a and /8 are the intercept and slope para

respectively. Regression weights are given bi
V,y, where V, is the sample variance of the er

mean estimated from V = s21m, where m is the

of ensemble forecasts (m = 9 for our forecast

ample). Forecasts with larger ensemble sprez

more uncertain ensemble means and so must b

less weight in the regression.

For independent ensemble forecasts the vari
the ensemble mean forecast in the likelihood

would be given by V, (see Clarke and Cooke 19S

section 10.3). However, if the ensemble meml

not independent, the variance differs from V,. A

way to ensure consistency is to allow scaling
ensemble variance V, by a factor y in Eq. (8).

-y should be equal to one but in practice here ' i

that one. In the case of a perfect model, but n

pendent ensemble members, y can be interpl

m/m', where m is the number of ensemble memi

m' is the effective number of independent foreca

dependency factor y' is obtained as a weighted i

the square regression residuals:

y = 1t w(X, - a - Ox)
n-2 P= (9)

41 where n is the length of the time series and w, = V,'.
X,,-6 Since the expectation of the ensemble mean is modeled

by linear regression (a + /0,), it follows that the es-
timated y will encompass the errors in this linear as-
sumption.

The solid line in Fig. 6 is the best-fit linear weighted
regression between raw ensemble mean values X, and ob-
servations 0,, corresponding to estimates for the whole
period of & = 6.24°C, /3 = 0.75, and ^' = 7.05. It can
be clearly seen that the raw coupled model ensemble fore-
cast is biased. These values and Fig. 6 indicate that (i) the
variance in Ninio-3.4 explained by the coupled model is

29 underestimated [i.e., Var(X,) < Var(0,) because / < 1];
(ii) the coupled model generally underestimates the mean

C). Each SST in the Niiio-3.4 region [solid line generally below
ensemble dashed line in Fig. (6)]; and (iii) either there are not enough
le means independent ensemble members (m' = mlt = 1.3) or the

e dashed error in the coupled model ensemble forecasts cannot be
removed by a linear regression.

To avoid introducing artificial skill, both prior and
likelihood distribution parameters are estimated using
cross-validation by leaving out the year being forecast.

model The mean cross-validated likelihood estimated param-
-rNifio- eters are & = 6.27(1.44) [0C]; 3 = 0.75(0.05); and t
lans are = 7.05(0.1 8), where the values in parentheses are the
line is mean of the standard errors obtained for each of the

he fore- cross-validated estimates.
es. The

weight- c. Determination of the posterior distribution
in fore-

From Bayes' theorem [Eq. (6)] it can be shown that
for a normal prior distribution 0 - N(g0,, az,2) and nor-

(8) mal likelihood X, I 0, - N(a + 300,, -yV,), the posterior
meters, distribution is also normal (Lee 1997). The resulting
m wt e normal posterior distribution is given by

isemble 0,1 X, - N(Q,, a72), (10)

number with the mean A, and the variance a72 equal to

id have
e given

ance of
i model
92, their
bers are
i simple
g of the
Ideally

is larger
Ot inde-
reted as
bers and
sts. The
mean of

1 1 /32

:j2 U2, ;V,

Li,, = ZL, + 32 lX, - ae
a2k' 'a., ^2 /3 /

(11)

(12)

A derivation of Eqs. (11) and (12) is presented in ap-
pendix B. The inverse of the variance is known in sta-
tistics as the precision. Equation (11) states that the
precision of the posterior distribution (I/no,2) is exactly
equal to the precision of the prior distribution (lIr-%)
plus the precision of the ensemble system (/32/yV,). Per-
fectly accurate unbiased forecasts would have precision
lI/V,. However, forecasts are not perfectly accurate and
unbiased and so the precision is instead given by the
term 32 I/yV,.

Equation (12) gives the posterior combined mean (,a)
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as the precision weighted sum of the prior empirical
mean (Poe) and the raw coupled model ensemble mean
(X,). Note that the precision of the prior distribution
and the precision of the ensemble system are weights
for the prior mean and raw ensemble mean, respectively.
The mean bias of the ensemble system is corrected when
the difference between X, and a is divided by the re-
scaling factor /3 (term in brackets). Note, however, that
the role of the prior diminishes with the increase of the
sample size m so that the posterior distribution is in-
creasingly dominated by the likelihood and not very
much affected by the prior.

d. Instrumental calibration and inverse regression

Rather than regress the forecasts on the observations,
it might at first appear more natural to regress the ob-
servations on the forecasts. In other words, one can use
the coupled model forecasts as predictors in a regression
model to obtain predictions of the observations. How-
ever, it should be noted that the (explanatory) forecast
values are not deterministic control variables but instead
contain large amounts of uncertainty. Furthermore, it
can be assumed that climate forecasts are generally more
uncertain than are the observed values. For these reasons
and what follows, it is better to develop a regression
model of the forecasts as a function of the observed
values. Least squares estimation then corresponds to
minimizing forecast error for fixed values of the ob-
served variable.

The calibration of the forecast X, to the predictand 0,
can be considered as a classical calibration problem for
an instrumental device. This is a long standing issue in
statistical literature, often referred to as the inverse re-
gression problem (Brown 1994). It is of relevance to
probability forecasting and so will be briefly reviewed
here.

In the simplest classical calibration setting, a precise
instrument gives a measurement 0,, while a less precise
instrument, to be calibrated, produces X, for the same
quantity. The calibration database consists of a time
series of paired values [(0,, X,), t = 1, 2, . . .T, T].
Some classical examples for 0, andX, are, respectively,
(real) pressures and gauge readings (Seber 1977), tree-
ring counts and (the less precise) carbon dating mea-
sure (Draper and Smith 1998), or a long and costly
laboratory method for determining the concentration
of a certain enzyme in blood plasma samples and a
quick and cheap autoanalyzer device (Aitchison and
Dunsmore 1975).

In this study, O, is the (more precise) best estimate of
the observed Nifio-3.4 index, while X, is the (less pre-
cise) raw coupled model ensemble-mean forecast of the
same index for the same year t. The coupled model
forecast can be considered to be an instrument for di-
agnosing the predictand, and calibrating the forecasts
then becomes a standard issue of instrumental calibra-
tion (Swets 1988). The problem of estimating 0, when

a new reading X, becomes available is known as the
inverse regression problem in statistical literature. This
is precisely our problem in calibrating some new fore
cast X, when an historical database is available.

The established protocol stems at least from Eisenhar
(1939) (see also Seber 1977; Aitchison and Dunsmorc
1975; Draper and Smith 1998; Brown 1982). Because
the errors in 0 values are negligible with respect to the
device (forecast) errors, 0, can be treated as the fixed
control values and then one obtains the regression mode
of X versus 0:

X, = a + Po, + e, (13,

where e, are independent normally distributed random
variables with zero mean and variance (r2. Then the
maximum likelihood (ML) estimate of 0 is

0, = (X, - t)/f, (14)

where & and , are the least squares solution of the
calibration equation (13). To avoid explosive estimates
when / i 0, truncated forms of Eq. (14) can be defined.

In summary, the classical calibration model considers
the conditional distribution of X given 0 (i.e., X I 0),
because the calibrating equation (13) describes the sto-
chastic measures conditionally to the true quantities.
Whereas Williams (1969) and others advocated using
Eq. (13) to derive the ML estimate [Eq. (14)], one can
also think of defining the inverse regression model for
OIX and then use it directly for estimating 0,. Following
this idea, Krutchkoff (1967, 1969), suggested the so-
called inverse estimate:

OK = a + bX± (15)

based on the least squares estimates a and b obtained
from the inverse regression model:

0, = a + bX, + e,. (16)

Classical and inverse estimates coincide only when X
is perfectly correlated with 0 in the calibration database.
The inverse regression approach is currently the prev-
alent method for correcting forecast biases in meteo-
rology. The inverse regression model is the typical re-
gression model used in previous climate forecasting
studies (e.g., Kharin and Zwiers 2002; Pavan and Dob-
las-Reyes 2000).

Krutchkoff (1967) used simulations to show that the
inverse method can have smaller mean-squared error
(MSE) than the classical calibration approach (even in
the truncated form). This led to a controversy in which
the MSE criterion was criticized for this particular case.
An alternative criteria was proposed and the conditions
of relative superiority of one method over the other were
investigated in depth by Williams (1969), Berkson
(1969), Halperin (1970), and Hoadley (1970) among
others, and later on by Chow and Shao (1990).

The Bayesian approach was useful in clarifying the
controversy (Hoadley 1970; Aitchison and Dunsmore
1975). Ideally, one would like the conditional distribution
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of 01 X but of course this cannot be obtained from the
conditional distribution of X I 0 without also having an
estimate of the marginal prior distribution p(0). By means
of p(O) and p(X I0) the distribution of p(OiX) can be
obtained using the Bayes' theorem [Eq. (6)] and the in-
verse regression problem can be solved. In order to un-
derstand the relative merits of classical and inverse es-
timators, note that both are special cases of the Bayesian
estimator but with two different priors (Hoadley 1970).
The classical maximum likelihood estimator corre-
sponds to a diffuse (improper) priorp(0) - 1, which leads
to a posterior distribution p(0,IX,) that is normal with
mean 0, [Eq. (14)]. Hoadley (1970) demonstrated that
the inverse estimator 0f corresponds to a Bayesian es-
timate_with the prior for 0 centered on the calibration
mean 0 = X 0,1T. In other words, by using 0, values of
the calibration dataset (0,, t = 1, 2, . . ., T) to estimate
a normal prior one finds that the posterior mean is given
by OK [Eq. (15)].

In the current comparison between classical and in-
verse estimators, the inverse regression will do well if
0, lies centrally in the set of previous 0 values used in
fitting the inverse calibration [Eq. (16)]. On the other
hand, the truncated classical estimator, corresponding to
a proper uniform prior, will be more efficient for more
extreme 0, values (Brown 1982). Because the inverse
regression prior is centered on the calibration mean 0,
the comparison of inverse and classical estimates will
be unfair to the latter if the calibration database coin-
cides with the verification database.

Note, however, that rather than using a different es-
timation technique for each case, the best method is to
choose the best prior for any particular application (the
Bayesian approach). To do this, one needs extra infor-
mation about 0 alone. In forecast calibration this is the
most common situation, where a short bivariate time
series [(0,, X,), t = 1, 2, . . .7, T] can be used for cali-
brating and a longer historical climatology can be used
to estimate the prior. The utility and flexibility of the
Bayesian approach in combining the two sources of in-
formation is apparent. The use of more complex prior
data including other predictors can further help in adapt-
ing the prior to the particular forecasting conditions. A
very simple example will be given in this paper by using
the previously defined empirical forecast to estimate the
prior.

4. Results

Figure 7a shows the mean of the combined forecast
(thick line), observations (thin line), the 95% P.1. (gray
shaded surrounded by long-dashed line) and the De-
cember climatological mean of 26.5°C (short-dashed
line). Comparison of this forecast with the empirical
forecast alone (Fig. 3a) and raw coupled model ensem-
ble forecast alone (Fig. 4a) shows that the combined
forecasts are in closer agreement with the observations.
The 95% P.I.s are also reduced compared to those of
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FIG. 7. (a) Dec 1987-99 Niho-3.4 index combined forecast (oC).
Observed values (thin solid line), forecast (thick solid line), and the
95% P.I. (dashed lines). The short-dashed line is the 1950-2001 Dec
climatological mean (26.5°C). (b) Standardized forecast error.

the empirical forecasts indicating a reduction in forecast
uncertainty due to combination with raw coupled model
forecasts. Unlike the raw coupled model forecasts, only
one forecast year (1994) falls outside the 95% P.I., in-
dicating that the forecasts are better calibrated than the
raw coupled model forecasts. However, it is worth men-
tioning that a similar effect could be obtained by crudely
removing the mean bias from the raw coupled model
forecasts and rescaling the averaged ensemble spread to
match the error variance.

Figure 7b shows the combined forecast standardized
errors. The smallest errors were found within the period
1987-93 and in 1995 and 1998. The largest errors were
in 1994, 1996, 1997, and 1999. It can be seen that these
errors are evenly distributed and centered on zero.

Figure 8 shows plots of the standardized forecast error
versus forecast values for the three types of forecasts

-.bs..va.io

--- lmaioiog

1511I APRIL 2004



JOURNAL OF CLIMATE

a) Empirical forecast
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b) Raw coupled model ensemble forecast
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FIn. 8. Standardized forecast error vs forecast in °C for (a) the
empirical forecast, (b) the raw coupled model ensemble forecast, and
(c) the combined forecast.

presented so far. Figure 8b shows that the raw coupled
model ensemble forecast is negatively biased. The stan-
dardized errors for the empirical forecast (Fig. 8a) and
for the combined forecast (Fig. 8c) are evenly spread
around the zero line. Note also that the combined fore-

cast does not show dependency on forecast values. How-
ever, this is not the case for the raw coupled model
ensemble forecast, in which larger forecast values are
associated with larger standardized forecast errors.

Table I gives some deterministic verification scores
and a measure of forecast uncertainty of seven different
forecasts of the December Nifio-3.4 index for the period
1987-99. All the forecasts were produced using the
cross-validation leave one out method and Table 1 sum-
marizes the skill of these forecasts in the short 13-yr
sample period.

* The climatological forecast is given by the historical
Nifio-3.4 index December mean value (0) of 26.50C
and the historical December standard deviation (s,)
of .1 9°C.

* The empirical forecast is given by a,, and d&,, as
defined in section 2a.

* The raw coupled model ensemble forecast is given by
X, and s, as defined in section 2b.

X The bias-corrected forecast is given by Xl = X, -
X + 0 and s,, where X, is the raw ensemble mean
forecast at time t, and X and 0 are the time means of
the raw ensemble mean forecast and the observed
mean values over the forecast period 1987-99, re-
spectively. This is a special case of a Bayesian forecast
with uniform prior (defined below) and simplified
likelihood [,3 = I and y = m in Eq. (8)]. Simplified
likelihood models the ensemble mean bias as a con-
stant (a) and the sample variance of the ensemble
forecast as mV, = s,2.

* The combined forecast with uniform prior is given by
(X, - a)/f3 and yV,/f 2. It is obtained by setting
a)o, to zero in Eqs. (11) and (12), that is, all values
of the index are equally likely. This prior characterizes
a "no-previous-information" reference case. The
combined forecast with uniform prior can be seen as
a Bayesian bias correction in the raw ensemble mean
and it is useful for comparison with the bias-corrected
forecast.

* The combined forecast with climatological prior is
given by ,ag_ and o-,. It is obtained when the Decem-
ber normal climatological distribution [i.e., N(O, s)]
is used as the prior distribution.

* The combined forecast is given by a, and G,, as de-
fined in section 3b.

The MSE and mean absolute error (MAE) have been
used as verification scores for the forecast means. The
MAE skill score given by SS = I - (MAE/MAE,),
where MAE, is the climatological MAE, was used to
measure forecast skill. The reason for using this score
instead of the MSE skill score is because the MAE skill
score provides a more resistant measure for small samples
(Jolliffe and Stephenson 2003). Forecast uncertainty was
summarized by the time mean of the predicted forecast
standard deviations over the forecast period 1987-99.

The climatological forecast is the most uncertain and
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TABIE 1. Forecast symbols, verification scores, skill score, and mean forecast uncertainty. The skill is measured by the MAE skill score
(see text for more details)-values in brackets indicate the percentage improvement compared to the ensemble system skill score. Forecast
uncertainty is given by the mean predicted forecast std dev over the period 1987-99.

Forecast Mean ,u Std dev a- MSE [OC]2 MAE [0C] Skill score [%j Uncertainty [°C1

Climatology 6 1.99 1.16 0 1.19
Empirical HO; 0.47 0.53 55 (+4) 0.61
Raw ensemble X, _ 0.47 0.57 51 0.33
Bias-corrected X,-X + 6 0.22 0.40 65 (+ 14) 0.33

Uniform prior ' 0.18 0.37 68 (+17) 0.39
13~~~~~~~3

Climatological prior A. °;, 0.17 0.32 72 (+21) 0.37
Combined a,, 0.13 0.31 74 (+23) 0.32
Perfect forecast - 0 0 100 0

imprecise forecast with the largest MSE and MAE errors
and the largest prediction uncertainty (Table I). The raw
coupled model ensemble forecast has (coincidentally)
the same MSE as the empirical forecast, and a slightly
larger MAE than the empirical forecast. Note that al-
though these two models have similar MSE and MAE
their uncertainty estimates are quite different. The width
of the 95% P.1. in Fig. 4a, which is proportional to the
mean uncertainty shown in Table 1, shows that the cou-
pled model uncertainty is unrealistically underestimated
and fails to cover the range of observations. The bias-
corrected coupled model forecast has smaller MSE and
MAE than the empirical forecast, and a greater skill
score than the raw coupled model ensemble forecast.
The uniform prior forecast has smaller MSE and MAE
than the bias-corrected forecast, a slightly better skill
score than the bias-corrected forecast and a much greater
skill score than the raw coupled model ensemble fore-
cast. The uniform prior has also smaller errors than the
empirical forecast, and a greater skill score than the
empirical forecast. These results suggest that the use of
prior information helps to improve forecast skill. It also
has a larger forecast uncertainty that is between the
uncertainty of the raw coupled model ensemble forecast
and the empirical forecast. The combined forecast with
climatological prior has slightly smaller MSE and MAE
than the combined forecast with uniform prior and great-
er skill scores than the bias-corrected forecast and the
raw coupled model ensemble forecast, indicating that
the use of climatological prior information helped to
improve even more forecast skill. The combined fore-
cast with climatological prior also has smaller errors

TABLE 2. The mean and variance of standardized forecast errors.

Forecast Mean Variance

Climatology -0.09 1.52
Empirical 0.24 1.40
Raw ensemble - 1.73 3.32
Bias corrected -0.12 2.43
Uniform prior 0.01 1.41
Climatological prior 0.04 1.41
Combined 0.20 1.46
Perfect forecast 0 1

than the empirical forecast, and a greater skill score than
the empirical forecast. It also has greater forecast un-
certainty, which is only slightly smaller than the uniform
prior forecast uncertainty. The combined forecast has
the smallest values of MSE and MAE of all the fore-
casts. It also shows an impressive improvement of 23%
in skill when compared to the raw coupled model fore-
casts, indicating that the use of a more informative prior
led to additional improvement in forecast skill. Addi-
tionally, it provides a much better and more realistic
uncertainty estimate compared to the other forecasts.

Table 2 summarizes the standardized forecast errors.
The mean standardized forecast error shows that the raw
coupled model forecast is negatively biased, with the
largest mean error of all the forecasts. The climatolog-
ical forecast, the combined forecast with uniform prior,
and the combined forecast with climatological prior
have the smallest mean errors, indicating that these fore-
casts are well calibrated. The raw coupled model en-
semble and the bias-corrected ensemble forecasts have
the largest and most unrealistic variances of the stan-
dardized forecast errors. All forecasts have variances
larger than one suggesting that the prediction uncer-
tainty of the forecasts is being underestimated.

Because these scores are based on only a small sample
of forecasts, one might worry that the benefits of using
the Bayesian approach are due to chance sampling.
However, similar conclusions as here were obtained
when the same methodology was applied to three other
versions of the ECMWF seasonal forecasting system,
one of which had a much longer record of 44 yr (Coelho
et al., 2003). Additional analyses of the robustness of
the obtained results have been performed by splitting
the 44-yr record into 3 samples of 13 forecasts each. It
has been found that Bayesian combined forecasts gen-
erally provide better and more reliable forecasts than
raw coupled model and empirical forecasts.

5. Conclusions

A Bayesian approach for calibrating and combining
empirical and raw coupled model ensemble forecasts
has been presented. The combined 5-month lead forecast
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of the Nifio-3.4 index has been shown to have greater
forecast skill than either of the forecasts individually.
This indicates that both empirical and raw coupled mod-
el ensemble forecasts contain mutually useful infor-
mation. In other words, neither forecast is sufficient for
the other forecast and so increased forecast skill can be
obtained by combining both types of forecast. In order
to produce improved interval forecasts of the Niiio-3.4
index, empirical and coupled model forecasts should be
combined together. The combined forecast also provides
a more reliable prediction error estimate because it is
based on a well-founded calibration approach that in-
corporates valuable historical information.

Good quality forecasts are expected to have both
small prediction errors (good accuracy) and reliable
forecast uncertainty estimates. It has been shown that,
although the ECMWF raw coupled model ensemble
forecast is able to simulate the interannual variability
of the Nifio-3.4 index reasonably well 5 months in
advance, it underestimates both the mean SST value
in the Ninio-3.4 region and forecast uncertainty. The
simple empirical model, on the other hand, provides
more skillful forecasts compared to the raw coupled
model ensemble forecast. These forecasts are less bi-
ased and present larger and more reliable uncertainty
estimates. When the Bayesian approach was used to
combine these two forecasts together, more skillful
forecasts were obtained having more accuracy and re-
liability.

It is important to stress that both the prior and the
likelihood model used in this study are simple. More
sophisticated regression models could easily produce
greater improvements in forecast skill, yet this is not
the ultimate aim of this pilot study. It should be noted
that some of the forecast errors/uncertainty derive from
the modeling assumption used here (e.g., normal-nor-
mal model). Our approach does not fully incorporate
uncertainty in the likelihood model parameter esti-
mates that could be treated using a hierarchical Bayes-
ian approach (see Berliner et al. 2000b). This meth-
odology also needs to be developed in order to combine
ensemble forecasts from different coupled models
(multimodel approach).
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APPENDIX A

Datasets and Lead Time

Historical (1950-2001) Nifio-3.4 index data were ob-
tained from Reynolds optimum interpolation version 2
SST dataset (Reynolds et al. 2002). Coupled model
Nifio-3.4 index ensemble forecasts were available from
the ECMWF for the period 1987-99, as part of the
Development of a European Multimodel Ensemble Sys-
tem for Seasonal to Interannual Prediction (DEMETER)
project (more information available online at http:H/
www.ecmwf.int/research/demeter/; Palmer et al. 2004).
In the DEMETER project, several coupled models are
run 4 times yr-', starting the first day of February, May,
August, and November at 0000 UTC. Nine ensemble
forecasts are produced for the next 6 months including
the starting month. Wind stress and SST perturbations
are used to generate the ensemble. However, as part of
this research only the ECMWF coupled model forecasts
from the DEMETER assimilation experiment have been
used. These forecasts were produced using initial con-
ditions from the ECMWF Re-Analysis (ERA-40) proj-
ect and also assimilate subsurface ocean data. Only fore-
casts started in August to forecast the next December
(5-month lead time) have been used. This lead time has
been chosen for two reasons: (i) the peak of Nifio-3.4
index SST during ENSO is usually observed in Decem-
ber (Rasmusson and Carpenter 1982); and (ii) August
is after the spring barrier and so gives predictive better
skill (Webster and Yang 1992).

APPENDIX B

Derivation of the Posterior Distribution

From Eqs. (7) and (8) the prior and the likelihood
probability density functions (pdf) are, respectively,

p(0,) = N(,m),, o§,,)

- l27T) "kr,,expj 2 at j and

p(X,I0,) = N(a + J0,, yV,)

l1F (X,-a - 0,),21
(2r)'2 (^V)" 2 exp1 21{

Changing the variable to Y, - (X, - a)/,B in the
likelihood function then gives

p (Y, I] (2Or)= 2 (yV)" 2 exp /2(; |,)2

which is a normal distribution for the random variable
Y, with mean 0, and variance yV,1f3 2:

p(0,) = N(A),, o,,,) p(Y,I 0,) = N(0,, O ).
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This is the normal-normal Bayesian model in stan-
dard form. Using Bayes' theorem [Eq. (6)], this can be
shown to have a posterior pdf which is normal, with
posterior precision (reciprocal variance) given by the
sum of prior precision and likelihood precision (Lee
1997):

1 I /32
-, 2~~~~

a; a02, yV,

while the posterior mean is the weighted average of prior
mean and the rescaled forecast Y1, with weights given by
the respective precisions. Substituting Y, by (X, - a)I/3
then gives

I, _ _ _ + 02 a)

aJr 0,2, yV,V V )
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