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Spin-size disordermodel for granular superconductors with charging effects
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Abstract

A quantum pseudo-spin model with random spin sizes is introduced to study the effects of charging-energy disorder on the super-

conducting transition in granular superconducting materials. Charging-energy effects result from the small electrical capacitance

of the grains when the Coulomb charging energy is comparable to the Josephson coupling energy. In the pseudo-spin model, ran-

domness in the spin size is argued to arise from the inhomogeneous grain-size distribution. For a particular bimodal spin-size dis-

tribution, the model describes percolating granular superconductors. A mean-field theory is developed to obtain the phase diagram

as a function of temperature, average charging energy and disorder.
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1. Introduction

Quenched disorder is obiquitous in condensed-matter
systems, sometimes determining entirely new physical
properties and phenomena. For the theoretical explana-
tion of many experimental findings, models of classical
and quantum spin systems are employed and - typically -
disorder is introduced through a spatial variation of the ex-
change couplings, of the direction of the axial anisotropies,
and of the sign of the couplings. Theoretical and exper-
imental studies of model and real physical systems with
these kinds of disorder have lead to much new physics.
Much discussed have been the glassy phases in magnetic
[1,2,3], and superconducting materials [4].
In superconductors, specially with the advent of high-Tc

ceramic superconductors, the role of disorder has become
central in the discussion of the physical properties of real
materials [3,4]. Many materials are naturally microstruc-
tured and granularity characterises the mesoscopic struc-
tures of most systems, leading to a phase diagram often dis-
playing a superconductor-insulator transition at zero tem-
perature due to the charging energy of the grains. As first
pointed out by Abeles [5], when the grain charging energy
arising from the charge Q and capacitance C of the grain,
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Ec = Q2/2C ∼ (2e)2/d (d is the grain diameter and e
the electronic charge) is larger than the Josephson-coupling
energy Eo between nearest neighbors grains, phase coher-
ence is destroyed due to zero-point quantum fluctuations
of the local phase of the superconducting order parameter
[6]. Granularity can also be realized in a controlled manner
in artificially fabricated Josephson-junction arrays of cou-
pled superconducting grains [7], with a space dimensional-
ity d less than 3. Such granular systems can be theoretically
modelled by pseudo-spin systems, the ’spins’ representing
with their states the few relevant quantum charge states of
the grains at relatively low temperatures. In such models
the pseudo-spin size is the same for all grains corresponding
to the assumption that the grain-size distribution is very
narrow, or alternatively, of negligible charging-energy dis-
order. A well known model of this type is the pseudo-spin-
one model introduced by de Gennes and studied in differ-
ent works [3,8,9,10] where only charge states−1, 0, 1 are al-
lowed, corresponding to S = 1. However, realistic systems
may contain different kinds of disorder, such as a spatial
distribution of Josephson couplings between grains or/and
a distribution of grain sizes, which leads to disorder in the
grain electrical capacitances and charging energies.
Studies of the effects of disorder in the electrical capac-

itance or charging energy of the grains have appeared re-
cently [11,12,13]. Within a mean-field approximation [11],
charging energy disorder widens the extent of the super-
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conducting phase at the expense of the insulating one. This
behavior is consistent with results for the superconductor-
insulator transition from quantum Monte Carlo simula-
tions in two-dimensional models of Josephson-junction ar-
rays [13] with disorder in the diagonal capacitance matrix.
Earlier calculations for the related boson Hubbard model
with disorder in the onsite Coulomb repulsion [14] are also
consistent with a decrease in the phase coherence thresh-
old and moreover suggest a different universality class from
the non-disordered case [15].
In this work, we consider the effects of charging energy

disorder in granular superconducting materials within the
pseudo-spin approach. By considering a spatial distribu-
tion of the grain sizes, which leads to local charging en-
ergy disorder, a quantum pseudo-spin model with random
on-site spin sizes can be constructed. A mean-field theory
is developed to obtain the phase diagram as a function of
temperature, average charging energy and disorder.
Spin-size disordermodels have seldom been considered in

the literature. In the context of classical spin models, spin-
size disorder can be readily turned into exchange-coupling
disorder; the physics of quantum systems with spin-size
disorder, however, appears to have not been investigated
in such depths. It has been considered mostly within the
one-dimensional systems: dilution of a quantum spin- 12 2-
ladder was studied by Sigrist and Furusaki [1] whilst the
general problem of a quantum spin chain with random S as
well as random J was considered by Westerberg et. al [2]
within a real-space renormalization-groupmethod showing
that these systems belong to a different universality class
of disordered spin systems.

2. Pseudo-spin model with random spin sizes

The Hamiltonian for a set of superconducting grains cou-
pled by the Josephson energy can be written as the sum of
the Coulomb charging energy and the Josephson-coupling
energy [3,6,8]

Hgs =
1

2

∑

i,j

C−1
ij QiQj −

∑

<ij>

Eij cos(θi − θj), (1)

where Qi is the net charge on the superconducting grain at
site i and θi is the phase of the local superconducting order
parameter ψi. Cij is the electrical capacitance matrix and
Eij is the Josephson coupling between nearest-neighbor
grains. The charge Qi in each grain can be expressed in
terms of the excess number of Cooper pairs ni asQi = 2eni.
Considering a diagonal capacitance matrixCij = Ciδij and
uniform Josephson-coupling energiesEij = Eo, leads to the
self-charging model

Hgs = 2
∑

i

Uin
2
i − Eo

∑

<ij>

cos(θi − θj), (2)

where Ui = e2/Ci are the charging energies of the grains.
The number operator ni is conjugate to the phase θi, sat-
isfying the commutation relation

[ni, θj ] = −iδij, (3)

and can be written as ni = −i∂/∂θi, having integer
eigenvalues 0,±1,±2.... The model of Eq. (2) can also
be regarded as a boson Hubbard model [14,15] where the
charging energy represents the onsite Coulomb repulsion of
bosons and the Josephson coupling represents the hopping
term.
When the charging energies are uniform Ui = Uo, a

pseudo-spin one model for the Hamiltonian of Eq. (2) can
be constructed by truncating the basis vectors of the num-
ber operators |ni > to |0 > and | ± 1 >, corresponding to
the lowest charging energy states. Identifying the charging
states, |ni >, as the eigenstates of Sz for spin S = 1, writ-
ting the second term of Eq. (2) in terms of e±iθi and making
the correspondence

eiθi → S+
i /

√
2, e−iθj → S−

j /
√
2, ni → Sz

i , (4)

one obtains the de Gennes mapping to a S = 1 pseudo-spin
model with single-ion spin-anisotropy [3,8]

HS=1 = 2Uo

∑

i

(Sz
i )

2 − Eo

4

∑

〈ij〉

(S+
i S

−
j + S+

j S
−
i ), (5)

with S+
i = Sx

i + iSy
i . The factor 1/

√
2 in front of S± in

Eq. (4) takes into account the length of the pseudo spin
√

S(S + 1). In terms of this spin model, the superconduc-
tor to insulator transition in the original granular supercon-
ductor corresponds to a zero temperature transition where
the ferromagnetic order of the spins in the xy plane is de-
stroyed by quantum fluctuations when the Sz component is
confined to zero for an increasing ratio of Uo/Eo. Although
this mapping is not exact [18], the T = 0 critical behav-
ior observed in the original phase model of Eq. (2) without
disorder and the spin model is the same [14,19] as found
in numerical calculations in one dimension. For higher di-
mensions, results from the same mean-field approximation
applied to both models also agree [8].
To consider the main effects of disorder in the charging

energies Ui, we generalize the above approximate mapping
to a pseudo-spin model with randomness in the spin-size
values Si. Since for a given charging energy (or tempera-
ture fluctuation), low values of Ui correspond to charging
states with higher ni, it seems reasonable to use a trunca-
tion scheme which identifies the charging states |ni > and
|nj > with the Sz-eigenstates of the spins of different sizes
Si and Sj , such that the corresponding maximum charging
energies 2UiS2

i and 2UjS2
j of the grains are both compara-

ble to the same truncation energy (here Si =
√

Si(Si + 1)
is the length of the spin Si). This (approximate) mapping
leads to the effective spin Hamiltonian

H = D
∑

i

1

S2
i

(Sz
i )

2 + J
∑

〈ij〉

1

SiSj
(S+

i S
−
j + S+

j S
−
i ), (6)

with randomness in the spin-size values Si. Here, J =
−Eo/2, D = 2Ū S̄2 where Ū is the average value of Ui and
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S̄ the average value of Si. The spin sizes Si are restricted
to take only integer values 0, 1, 2, 3, ... in this mapping. In
Eq. (6), randomness in the spin-size also leads to random-
ness in the local single-ion anisotropy parameter, but these
random variables are only correlated at the same site.
A typical spin-size distribution we shall be considering is

P (Si) = x
∑

L=±1

δ(Si − So − L) + (1 − 2x)δ(Si − So), (7)

where three spin-size values So, So+1 and So−1 are mixed
with average value So and a concentration x, which is a
measure of the disorder. It is also convenient to rewrite the
spin model of Eq. (6) in terms of normalized spins S̃i =
Si/Si

H = D
∑

i

(S̃z
i )

2 + J
∑

〈ij〉

(S̃+
i S̃

−
j + S̃+

j S̃
−
i ). (8)

In this latter form, a bimodal distribution of spin values
can be considered:

P (S̃i) = xδ(S̃i − S̃1) + (1 − x)δ(S̃i − S̃2), (9)

which in the special case S̃1 = 0 corresponds to the dilu-
tion of a spin-S2 system or to percolating granular super-
conductors [16] in the presence of charging effects.

3. Mean-Field Theory

For high enough space dimensions d, reasonable results
can be obtained from simple mean-field approximations
(MFA). The MFA replaces all variables around a given
small cluster with their average value, or order parame-
ter, and then use the resulting approximate Hamiltonian to
evaluate the order parameter itself. Since the spin sizes are
random, one must carry out the averaging procedure with
respect to P (Si) as well and we denote this by [...]ave.
The simplest cluster is a single spin on a site. With M =

[< Si >]ave the mean field, this yields a self-consistent
equation for the order parameter M:

M = [〈Si〉]ave =

[

1

ZMFA
TrSi

Sie
−βH̄MFA

]

ave

, (10)

where H̄MFA is the mean-field Hamiltonian and β =
1/kBT . For the anisotropic Hamiltonian of Eq. (6), we
assume that the ferromagnetic ordering takes place in the
xy plane of the anisotropy, say [< Sx

i >]ave =M . Then, in
the MFA we replace [3]

Sx
i S

x
j + Sy

i S
y
j → 〈Sx

i 〉Sx
j + Sx

i 〈Sx
j 〉 − 〈Sx

i 〉〈Sx
j 〉, (11)

by virtue of the fact that < Sy
i >= 0. Near the critical

curve, the MFA Hamiltonian then becomes:

H̄MFA = D
∑

i

((S̃z
i )

2 − λS̃x
i ) +O(M̃2), (12)

where λ = 2z|J |M̃/D is a dimensionless expansion param-
eter.

Since we are interested in the phase transition line only,
we can assume M̃ ≡ M/S small and use a first-order per-
turbation expansion to solve Eq. (10) for arbitrary spin S.
In a now single-site problem, we reabsorb a factor S−2 into
D and J . The unperturbed states |m > are eigenstates of
Sz and thus also of the unperturbed Hamiltonian Ho =
D(Sz)2, with m = −S,−S + 1, ..., S − 1, S. We have

〈Sx〉 =
∑

m e−βEm〈ψm|Sx|ψm〉
∑

m e−βEm
, (13)

where to first-order Em = Dm2 + 〈m| − λDSx|m〉 = Dm2

and

|ψm〉= |m〉+
∑

m′,m

′ 〈m′| − λDSx|m〉
E0

m − E0
m′

|m′〉

= |m〉 − λ
∑

m′,m

′ 〈m′|Sx|m〉
m2 −m′2

|m′〉. (14)

Here, the prime on
∑′

means m′ 6= m. These can then be
inserted in Eq. (13) to get, keeping only first order terms
in λ:

〈Sx〉 = 2

Z0

∑

m′,m

′
e−βDm2 〈m|Sx|m′〉〈m′|Sx|m〉

m′2 −m2
λ, (15)

where Z0 =
∑S

m=−S e
−βDm2

. Using

〈m|Sx|m′〉= 1

2
(AS

m−1δm′,m−1 +AS
mδm′,m+1)

AS
m =

√

(S −m)(S +m+ 1), (16)

we get

〈Sx〉 = λ

2Z0

∑

m

{ (AS
m)2

(m+ 1)2 −m2
+

(AS
m−1)

2

(m− 1)2 −m2
}e−βDm2

(17)

which, using Eq. (10), gives implicitly the critical temper-
ature in the MFA

D

2z|J | =
[ 1
∑

m e−Dm2/(S(S+1)kBTc)

S
∑

m=−S

S(S + 1) +m2

1− 4m2
e−Dm2/(S(S+1)kBTc)

]

ave
.(18)

One can check that for S = 1 and in absence of disor-
der the MFA transition line from Eq. (18) agrees with the
result obtained for the de Gennes model of Eq. (5) in the
same approximation [3]. Fig. 1 shows the phase boundaries
between the superconducting and normal phases obtained
in absence of disorder for different values of uniform spin
sizes S = 1, S = 2 and S = 5. The critical value Eo/Uo for
the superconductor-insulator transition at T = 0 remains
unchanged and only at much higher temperatures there is
a deviation in the transition lines when considering larger
spin approximations. This is in agreement with MF calcu-
lations using truncated basis vectors in the phase model of
Eq. (2) for increasing number of states [8].
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Fig. 1. Phase boundary without disorder obtained from the pseu-
do-spin model with different uniform spin values Si = 1, 2 and Si = 5.

Our present calculations generalize the MFA to arbitrary
spin sizes and allow to obtain the transition line in the case
of a random spin size distribution by simply averaging with
respect to P (S) in Eq. (18). The consequences of spin-size
disorder depend very much now on the chosen distribution,
but it is expected that in general within a simple MF ap-
proximation, the phase transition of the homogeneous sys-
tem is preserved with at most a modification of the phase
boundary line. Fig. 2a shows the transition lines for the
spin-size distribution of Eq. (7) with So = 2 and different
values of the disorder parameter x. For increasing disor-
der the critical value for phase coherence Eo/Ū decreases,
increasing the extent of the superconducting phase at low
enough temperatures. This behavior is in qualitative agree-
ment with MF calculations [11] in the phase model of Eq.
(2).
On the other hand, a different behavior is expected when

there is dilution of superconducting grains. Fig. 2b shows
the transition lines for the spin-size distribution of Eq. (9)
with S̃1 = 0, S2 = 2, corresponding to a dilution of grains
for different concentrations x. In this case, disorder de-
creases the extent of the superconducting phase. For large
values of x, corresponding to the system below the perco-
lation threshold, the superconducing phase should disap-
pear. However, an improved MF approximation is required
to describe this behavior. One possible approach is the MF
renormalizaton-groupmethod [17] used previously to study
the de Gennes model of Eq. (5) in absence of disorder [9].

4. Conclusions

We have introduced a quantum pseudo-spin model with
random spin sizes to model the effects of charging-energy
disorder in granular superconducting materials. Random-
ness in the spin size is argued to arise from the inhomoge-
neous grain-size distribution. For a particular bimodal spin-
size distribution, the model describes percolating granu-
lar superconductors. A mean-field theory has been devel-
oped to obtain the phase diagram as a function of tempera-
ture, average charging energy and disorder. The results are
qualitatively consistent with previous mean-field calcula-
tions in the phase-number representation. The pseudo-spin
model should provide a useful framework to study the crit-
ical behavior and universality classes in presence of strong
charging-energy disorder.

0.0 0.5 1.0 1.5 2.0
0
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Normal Superconductor
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 x=0.1
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Fig. 2. Phase boundary with disorder obtained from the pseudo-spin
model with random spin sizes: a) with charging energy disorder,
corresponding to disordered spins values giving by the probability

distribution of Eq. (7), with average spin value So = 2 and different
x ; b) with dilution of grains, corresponding to the disordered spin
values with the probability distribution of Eq. (9), with S̃1 = 0 and
S2 = 2 and different x
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