Spin-size disorder model for granular superconductors with charging effects

Enzo Granato ®*

and Giancarlo Jug?

aLaboratdrio Associado e Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais, 12227-010 Sao José dos Campos, SP Brazil
b Dipartimento di Fisica e Matematica, Universita dell’Insubria, Via Valleggio 11, 22100 Como, Italy
CNISM — Unita di Ricerca di Como and INFN — Sezione di Pavia, Italy

m&mmmmljlﬂﬂm9

nd-

Abstract

A quantum pseudo-spin model with random spin sizes is introduced to study the effects of charging-energy disorder on the super-
conducting transition in granular superconducting materials. Charging-energy effects result from the small electrical capacitance

= of the grains when the Coulomb charging energy is comparable to the Josephson coupling energy. In the pseudo-spin model, ran-

domness in the spin size is argued to arise from the inhomogeneous grain-size distribution. For a particular bimodal spin-size dis-
E tribution, the model describes percolating granular superconductors. A mean-field theory is developed to obtain the phase diagram
as a function of temperature, average charging energy and disorder.
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1. Introduction

Quenched disorder is obiquitous in condensed-matter
systems, sometimes determining entirely new physical
properties and phenomena. For the theoretical explana-
tion of many experimental findings, models of classical
and quantum spin systems are employed and - typically -

? disorder is introduced through a spatial variation of the ex-

>
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change couplings, of the direction of the axial anisotropies,
and of the sign of the couplings. Theoretical and exper-
lmental studies of model and real physical systems with
these kinds of disorder have lead to much new physics.
Much discussed have been the glassy phases in magnetic
[1213], and superconducting materials [4].

In superconductors, specially with the advent of high-T,
ceramic superconductors, the role of disorder has become
central in the discussion of the physical properties of real
materials [34]. Many materials are naturally microstruc-
tured and granularity characterises the mesoscopic struc-
tures of most systems, leading to a phase diagram often dis-
playing a superconductor-insulator transition at zero tem-
perature due to the charging energy of the grains. As first
pointed out by Abeles [5], when the grain charging energy
arising from the charge @) and capacitance C of the grain,
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E. = Q*/2C ~ (2¢)?/d (d is the grain diameter and e
the electronic charge) is larger than the Josephson-coupling
energy F, between nearest neighbors grains, phase coher-
ence is destroyed due to zero-point quantum fluctuations
of the local phase of the superconducting order parameter
[6]. Granularity can also be realized in a controlled manner
in artificially fabricated Josephson-junction arrays of cou-
pled superconducting grains [7], with a space dimensional-
ity d less than 3. Such granular systems can be theoretically
modelled by pseudo-spin systems, the ’spins’ representing
with their states the few relevant quantum charge states of
the grains at relatively low temperatures. In such models
the pseudo-spin size is the same for all grains corresponding
to the assumption that the grain-size distribution is very
narrow, or alternatively, of negligible charging-energy dis-
order. A well known model of this type is the pseudo-spin-
one model introduced by de Gennes and studied in differ-
ent works [3I8/9IT0] where only charge states —1,0, 1 are al-
lowed, corresponding to S = 1. However, realistic systems
may contain different kinds of disorder, such as a spatial
distribution of Josephson couplings between grains or/and
a distribution of grain sizes, which leads to disorder in the
grain electrical capacitances and charging energies.
Studies of the effects of disorder in the electrical capac-
itance or charging energy of the grains have appeared re-
cently [TIUT2JT3]. Within a mean-field approximation [IT],
charging energy disorder widens the extent of the super-
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conducting phase at the expense of the insulating one. This
behavior is consistent with results for the superconductor-
insulator transition from quantum Monte Carlo simula-
tions in two-dimensional models of Josephson-junction ar-
rays [13] with disorder in the diagonal capacitance matrix.
Earlier calculations for the related boson Hubbard model
with disorder in the onsite Coulomb repulsion [14] are also
consistent with a decrease in the phase coherence thresh-
old and moreover suggest a different universality class from
the non-disordered case [15].

In this work, we consider the effects of charging energy
disorder in granular superconducting materials within the
pseudo-spin approach. By considering a spatial distribu-
tion of the grain sizes, which leads to local charging en-
ergy disorder, a quantum pseudo-spin model with random
on-site spin sizes can be constructed. A mean-field theory
is developed to obtain the phase diagram as a function of
temperature, average charging energy and disorder.

Spin-size disorder models have seldom been considered in
the literature. In the context of classical spin models, spin-
size disorder can be readily turned into exchange-coupling
disorder; the physics of quantum systems with spin-size
disorder, however, appears to have not been investigated
in such depths. It has been considered mostly within the
one-dimensional systems: dilution of a quantum spin—% 2-
ladder was studied by Sigrist and Furusaki [I] whilst the
general problem of a quantum spin chain with random S as
well as random J was considered by Westerberg et. al [2]
within a real-space renormalization-group method showing
that these systems belong to a different universality class
of disordered spin systems.

2. Pseudo-spin model with random spin sizes

The Hamiltonian for a set of superconducting grains cou-
pled by the Josephson energy can be written as the sum of
the Coulomb charging energy and the Josephson-coupling
energy [3I6G18]

Hyy = 530500, — Y By cos(ls — 6y). (1)
i, <ij>

where @; is the net charge on the superconducting grain at
site ¢ and 6; is the phase of the local superconducting order
parameter ;. Cy; is the electrical capacitance matrix and
E;; is the Josephson coupling between nearest-neighbor
grains. The charge ; in each grain can be expressed in
terms of the excess number of Cooper pairs n; as Q; = 2en;.
Considering a diagonal capacitance matrix Cj; = C;6;; and
uniform Josephson-coupling energies F;; = E,, leads to the
self-charging model

Hy, =2 Z Umn? — E, Z cos(8; — 0,), (2)
i <ij>

where U; = e2/C; are the charging energies of the grains.
The number operator n; is conjugate to the phase 6;, sat-
isfying the commutation relation

[ni, 6‘]] = —i&ij, (3)

and can be written as n, = —id/00;, having integer
eigenvalues 0,41,£2.... The model of Eq. @) can also
be regarded as a boson Hubbard model [I4/15] where the
charging energy represents the onsite Coulomb repulsion of
bosons and the Josephson coupling represents the hopping
term.

When the charging energies are uniform U, = U,, a
pseudo-spin one model for the Hamiltonian of Eq. (2] can
be constructed by truncating the basis vectors of the num-
ber operators |n; > to |0 > and | &1 >, corresponding to
the lowest charging energy states. Identifying the charging
states, |n; >, as the eigenstates of S* for spin S = 1, writ-
ting the second term of Eq. () in terms of e**%* and making
the correspondence

e STV, e 5TV i SE (4)
one obtains the de Gennes mapping to a .S = 1 pseudo-spin

model with single-ion spin-anisotropy [38]

o B _ _
Hs—y =2U, Y (S7)* - o S (SFST +5787), (5)
i (i)

with S}t = S +iSY. The factor 1/4/2 in front of S* in
Eq. @) takes into account the length of the pseudo spin
v/S(S 4+ 1). In terms of this spin model, the superconduc-
tor to insulator transition in the original granular supercon-
ductor corresponds to a zero temperature transition where
the ferromagnetic order of the spins in the xy plane is de-
stroyed by quantum fluctuations when the S* component is
confined to zero for an increasing ratio of U,/ E,. Although
this mapping is not exact [18], the T = 0 critical behav-
ior observed in the original phase model of Eq. (2]) without
disorder and the spin model is the same [I419] as found
in numerical calculations in one dimension. For higher di-
mensions, results from the same mean-field approximation
applied to both models also agree [§].

To consider the main effects of disorder in the charging
energies U;, we generalize the above approximate mapping
to a pseudo-spin model with randomness in the spin-size
values S;. Since for a given charging energy (or tempera-
ture fluctuation), low values of U; correspond to charging
states with higher n;, it seems reasonable to use a trunca-
tion scheme which identifies the charging states |n; > and
[n; > with the S*-eigenstates of the spins of different sizes
S; and S, such that the corresponding maximum charging
energies 2U;S} and 2U;S7 of the grains are both compara-

ble to the same truncation energy (here S; = /S;(S; + 1)
is the length of the spin S;). This (approximate) mapping
leads to the effective spin Hamiltonian

1
S;S;

1, .. _ _

H:Dzﬁ(&)%ﬁ] (SfFS7 +8787),  (6)
it (i5)

with randomness in the spin-size values S;. Here, J =

—-FE,/2, D= 2US? where U is the average value of U; and



S the average value of S;. The spin sizes S; are restricted
to take only integer values 0, 1,2, 3, ... in this mapping. In
Eq. (@), randomness in the spin-size also leads to random-
ness in the local single-ion anisotropy parameter, but these
random variables are only correlated at the same site.

A typical spin-size distribution we shall be considering is

P(S;) == Z 6(S8i = So — L) + (1 = 22)6(5; — S5),  (7)
L=+1

where three spin-size values S,, S, +1 and S, — 1 are mixed
with average value S, and a concentration x, which is a
measure of the disorder. It is also convenient to rewrite the
spin model of Eq. (@) in terms of normalized spins S; =

S /Si
H=DY (852 +J (5755 +5787). (8)

i (i5)
In this latter form, a bimodal distribution of spin values
can be considered:

P(S’l) = l‘é(gz — S’l) + (1 - ,T)(S(S’l - gg), (9)

which in the special case S =0 corresponds to the dilu-
tion of a spin-Ss system or to percolating granular super-
conductors [16] in the presence of charging effects.

3. Mean-Field Theory

For high enough space dimensions d, reasonable results
can be obtained from simple mean-field approximations
(MFA). The MFA replaces all variables around a given
small cluster with their average value, or order parame-
ter, and then use the resulting approximate Hamiltonian to
evaluate the order parameter itself. Since the spin sizes are
random, one must carry out the averaging procedure with
respect to P(S;) as well and we denote this by [...]ave-

The simplest cluster is a single spin on a site. With M =
[< S; >]ave the mean field, this yields a self-consistent
equation for the order parameter M:

TrsiSiefﬁHMFA
MFA ave

M = [(S)]ave = ; (10)
where Hppa is the mean-field Hamiltonian and f =
1/kpT. For the anisotropic Hamiltonian of Eq. (@), we
assume that the ferromagnetic ordering takes place in the

xy plane of the anisotropy, say [< ST >|qve = M. Then, in

the MFA we replace [3]
SPST + S8 = (S7)SF + SPST) — (STIST), (11)

by virtue of the fact that < SY >= 0. Near the critical
curve, the MFA Hamiltonian then becomes:

Hypa :DZ((S}ZF — ASP) 4+ O(M?), (12)

where A = 2z|J|M /D is a dimensionless expansion param-
eter.

Since we are interested in the phase transition line only,
we can assume M = M /S small and use a first-order per-
turbation expansion to solve Eq. (I0]) for arbitrary spin S.
In a now single-site problem, we reabsorb a factor S~2 into
D and J. The unperturbed states |m > are eigenstates of
S% and thus also of the unperturbed Hamiltonian H,

D(S%)?, with m = —S, =S +1,..., S — 1, S. We have

2 m € (Y S [Yom
w>::z Zméﬁgn| ) (13)
where to first-order E,,, = Dm? + (m| — ADS*|m) = Dm?

and

' (m!| — ADS®
) =l + 3 )

AZ

Here, the prime on Z/ means m’ # m. These can then be
inserted in Eq. (I3) to get, keeping only first order terms
in A:

oy _ 2 N~ —ppm (m[STm) (m!|S7|m)
(57 == P g Ao (15)

—m2?

’IS””Im

|m/). (14)

m/,m

where Zy = Ei _s e=BPm* Using

(|7 ') = 5 (A5, Gt AS, s
A5 =VE—mE ), (16)
we get
? (45,

Z{m—i-l +(m—1)2—m
which, using Eq. ([I0), gives implicitly the critical temper-
ature in the MFA

D 1
2Z|J| - [Zm e—sz/(S(S-‘rl)kBTc)

XS: S(S+1) +m? _

sz/(S(SH)kBTc)]
1 —4m?2

18)

(l'UE(
m=—=5

One can check that for S = 1 and in absence of disor-
der the MFA transition line from Eq. (I8) agrees with the
result obtained for the de Gennes model of Eq. () in the
same approximation [3]. Fig. 1 shows the phase boundaries
between the superconducting and normal phases obtained
in absence of disorder for different values of uniform spin
sizes S =1, S =2 and S = 5. The critical value E, /U, for
the superconductor-insulator transition at 7' = 0 remains
unchanged and only at much higher temperatures there is
a deviation in the transition lines when considering larger
spin approximations. This is in agreement with MF calcu-
lations using truncated basis vectors in the phase model of
Eq. (@) for increasing number of states [g].

S e PP (1)
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Fig. 1. Phase boundary without disorder obtained from the pseu-
do-spin model with different uniform spin values S; = 1,2 and S; = 5.

Our present calculations generalize the MFA to arbitrary
spin sizes and allow to obtain the transition line in the case
of a random spin size distribution by simply averaging with
respect to P(S) in Eq. (I8). The consequences of spin-size
disorder depend very much now on the chosen distribution,
but it is expected that in general within a simple MF ap-
proximation, the phase transition of the homogeneous sys-
tem is preserved with at most a modification of the phase
boundary line. Fig. 2a shows the transition lines for the
spin-size distribution of Eq. (7)) with S, = 2 and different
values of the disorder parameter x. For increasing disor-
der the critical value for phase coherence F,/U decreases,
increasing the extent of the superconducting phase at low
enough temperatures. This behavior is in qualitative agree-
ment with MF calculations [I1] in the phase model of Eq.
@.

On the other hand, a different behavior is expected when
there is dilution of superconducting grains. Fig. 2b shows
the transition lines for the spin-size distribution of Eq. (@)
with §; =0, Sy = 2, corresponding to a dilution of grains
for different concentrations x. In this case, disorder de-
creases the extent of the superconducting phase. For large
values of x, corresponding to the system below the perco-
lation threshold, the superconducing phase should disap-
pear. However, an improved MF approximation is required
to describe this behavior. One possible approach is the MF
renormalizaton-group method [I7] used previously to study
the de Gennes model of Eq. (@) in absence of disorder [9].

4. Conclusions

We have introduced a quantum pseudo-spin model with
random spin sizes to model the effects of charging-energy
disorder in granular superconducting materials. Random-
ness in the spin size is argued to arise from the inhomoge-
neous grain-size distribution. For a particular bimodal spin-
size distribution, the model describes percolating granu-
lar superconductors. A mean-field theory has been devel-
oped to obtain the phase diagram as a function of tempera-
ture, average charging energy and disorder. The results are
qualitatively consistent with previous mean-field calcula-
tions in the phase-number representation. The pseudo-spin
model should provide a useful framework to study the crit-
ical behavior and universality classes in presence of strong
charging-energy disorder.
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Fig. 2. Phase boundary with disorder obtained from the pseudo-spin
model with random spin sizes: a) with charging energy disorder,
corresponding to disordered spins values giving by the probability
distribution of Eq. (@), with average spin value S, = 2 and different
z ; b) with dilution of grains, corresponding to the disordered spin
values with the probability distribution of Eq. (@), with S1 =0 and
S2 = 2 and different x
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