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plements the study of Carrocci (1982).

We present the analysis of a viscous, incompressible
flow between two parallel, horizontal plates. The space
between them is partially filled with an isotropic non-
homogeneous porous media. The upper one oscillates
longitudinally while the lower one remains stationary
(see Fig. 2.1).

In section 2 we model the problem and section 3
shows the numerical results obtained solving the cor-
responding equations.
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SUMMARY
Stationary and non - stationary flows are of great interest from the practical view point. We
present in this work an exact solution of the equations that describe the flow between two
parallel plates with the gap partially filled with a porous media. The upper plate oscillates
longitudinally while the lower one remains stationary. Analytical expressions for the velocities
and temperatures are derived and analysed as functions of porosity and thermal conductivity.
1. Introduction
In the fourth section we discuss the results.
Engineering applications such as petroleum wells
d.rllh.ng, f.lows in porous m.edla, elastic waves propaga- S Nathematical Model
tion in soils, etc., have motivated a great deal of interest
on stationary and non-stationary flows between parallel
‘plates. Several authors(Ishgaki, 1971 - Cox, 1991) have
determined velocity and temperature profiles of these
flows modeled by the Navier-Stokes equations. Despite e
. the large number of works, in some specific cases of lu- ¥ a U* ( t*) =u_cosa*t®
brification mechanics, such as journal bearings - where “
the surfaces are porous material and there is a lubrifi-
cating film between them - exact solutions are hardly free flow
found in the literature. 2h
? wk
The present work is a generalization of Stokes’ sec- porous media
ond problem studied by Schlichting (1968) and it com-

Figure 2.1: Geometrical description of the problem.
U*(t*) represents the velocity of the upper plate.

Consider a two-dimensional flow of an incompressible
fluid between two parallel infinite plates separated by a
distance 2ii. The upper plate oscillates longitudinally
and the lower one remains stationary, as shown in Fig-
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ure 1. Suppose that the flow does not change in the
direction and that there is no pressure gradient acting
on the flow. The analysis of the problem must be di-
vided accordingly to the two regions, one in which the
fluid flows freely and the other for the flow through the
porous media.

Let us denote with 1 and 2 the variables correspond-
ing to the free flow and in the porous media respec-
tively, then let uj be the flow velocities, v; the kine-
matic viscosities and € the permeability of the porous
media . If the upper plate’s motion is given by U*(t*) =
Up cos w*t* with Up and w* constants, then the momen-
tum equations are:

free flow . U (&%) o
U, Py
B ar e 2.1)
flow in the porous media
(2.2)
ous oU*(t*) - M T .
e BT =% t*) —
ot* ot* +2 6y12 + € lU ( ) U’2]’

subjected to the following boundary conditions
u;(h’t‘) = U'(t*)’ u;("'hvt*) =0,

Ouj
ayt

Under the same flow hypothesis defined before, con-
sidering the heat transfer by convection zero, and de-
noting by 7; the temperatures, «; and c; the thermal
conductwmes and specific heat constants, the equa-
tions for the temperature distributions are:

_ ou3
ot BY" v

u3(0,t*) = u3(0,¢%),

or 62T* + Ou; (2.3)
at" %3 aym2 33/’ :
with the boundary conditions
Ty (ht*) = T3(—h,t*) =1z,
190, = N0, 1),
BT* a1y
1 By a0 8y* |ys0.
Let us define the dimensionless parameters
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then, using (2.4) in (2.1),(2.2) and (2.3) we finally ob-
tain the equations for the velocities and temperature:

ou; oU(t

% = W0 oS w0 -l @)
9; oy 8%; du;\?
-2 = 2:6
ot Prj ayZ +aJEcJ ay ’ ( )

valid for j = 1,2. In (2.6), Pr; and Ec; represent the
Prandtl and Eckert numbers for the regions.

It can be observed that although the system is nonlin-
ear because equation (2.6) is coupled with (2.5) by the
quadratic term, it can be studied with a linear anal-
ysis, solving first (2.5) and using the result as a non
homogeneity in (2.6).

Equation (2.5) is solved utilizing the method of sep-
aration of variables, assuming a general solution of the
form

uj(y,t) = coswt+coswt [c15cos0;ycoshojy
+ cgjsingjycoshojy
+c3; cos 0y sinh 0]
+c4jsin o ysinh oy
+sinwt [cs; cosojycoshajy
+ cgjsingjycoshojy
+ C7j COSijSinhij
-+ cgjsingjysinhaojy],
(2.7

0'2=Re< ﬂ+zw),
«

with the following boundary conditions:

where

01 = Re(vw),

u;(1,t) = coswt, ug(—1,t) =0,

Guy
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0,t) = uz(0,t),
u1(0,¢t) = u2(0,1) ael o

y=0

Solving (2.5),(2.6) is reduced to solve a linear al-
gebraic system, for which we used a program written
in the symbolic manipulation language Mathematica
(Wolfram,1988). We developed the study of the de-
scribed problem for the cases: a) the two plates have
given, constant temperatures. b) the upper plate is adi-
abatic and the lower one is isothermic and c) the upper
plate is isothermic and the lower one adiabatic using
the following boundary conditions:
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0i(L,t) =1, B5(~1,8) =0,
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3. Results

Figure 3.1: Velocity u as function of time and space for
w =10 and € = 0.1.

We present in this section the results obtained evalu-
ating numerically the solutions of equations (2.5) and
(2.6) yield by the program written in Mathematica com-
mented before.

Figure 3.1 shows the evolution in time of the veloc-
ity profiles of case a) with w = 10 and € = 0.1. One
can observe in it that, due to the oscillation of the up-
per plate, the plane velocity profiles corresponding to a
uniform flow are deformed into a curved surface.

The analysis of the velocity’s behavior on a time in-
terval equal to a half-period of oscillation T/2 = 7/w,

1.0 A —A— t=0.
RN s
B t=1a
—F— t=31m
1] D o5 =1
—— t=3T4
in| 0-0
0J lu.v I D
1 .0
u(ty)
-1.0

Figure 3.2: Dependence of u on time, with y varying
between the plates in case a). The parameters are w =
10, e =0.1.

with w = 10 is summarized in Figure 3.2. It is shown
there that even in the absence of an external pressure
gradient, inversion of motion is verified at several in-
stants, for example at t = T/4. These inversions are
consequences of the viscous forces and the inertia of
the fluid.

e=0.10
e=025
£=0.50
€=0.75

=090

Figure 3.3: Dependence of the velocity u on the perme-
ability € in the case a) of two isothermic plates.

The dependence of the velocity on the permeability is
presented in Figure 3.3, for which we used a frequency
w = 5 and € varying between 0.1 and 0.9. It can be
observed that the inertia forces in the porous media
are two orders of magnitude smaller than the viscous
forces, verifying Darcy’s law (Batchelor, 1967).

We next illustrate the influences of the thermal con-



Figure 3.4: Dependence of @ on time in case c) for y
varying between the plates. The frequency is w = 10,
€=0.1 and & = 1.

ductivity and permeability on the temperature profiles
for the cases a), b) and c).

Figures 3.4-4.1 show the variations of temperature in
the space between the plates as functions of time for the
three cases, when the ratio between the thermal con-
ductivity coeflicients and the ratio between the Prandtl
and Eckert numbers are unity. It can be seen that the
profiles are similar, and that large temperature varia-
tions in the porous media are due to the fluid motion
and to the heat conduction.

The results for the temperature profiles when w = 5
and ¢t = 1, for the cases in which the ratio between the
thermal conductivity coefficients of the porous media
and the free fluid varies between 10~2 and 10 and per-
~ meabilities equal to 0.1,0.5 and 0.75 are presented in
figures 4.2 and 4.3. It is verified that the maximum
temperature of the flow in the porous media, at that
instant, decreases with the permeability. It can also be
observed that the difference between the thermal con-
ductivity coefficients changes the temperature, produc-
ing the separation of the curves at the interface between
the two media.

4. Comments and Conclusions

The values between 5 and 20 for the dimensionless
frequency were established through numerical exper-
iments, utilizing a program written in Mathematica.
The range of permeabilities between 0.1 and 0.5 is of
particular interest in Tribology because it better repre-
sents real engineering cases and, thus, we choose these

Figure 3.5: Temperture § as a function of space and
time in case a) of two isothermic plates.

values for the analysis in this paper.

We have determined that high permeabilities, besides
diminishing the lubrificant fluid retention, also diminish
the dumping property of the porous media to mechan-
ical shocks in journal bearings.

With respect to heat transfer and because we are
dealing with low velocities and low temperatures, we
verified that heat conduction is the dominant phe-
nomenon.

For the range of permeabilities considered here one
can deduce, observing the deformation of the corre-
sponding profiles, that the flow velocity and the stress
increase with the permeability.

The difference of temperatures in the neighborhood
of the interface increases with the ratio between the
thermal conductivity coeflicients. In the porous region,
the temperature increases markedly and its maximum
value decreases with the permeability.

Using a symbolic manipulation language for this kind
of problem yields interesting results from the physical
point of view. From the practical point of view, the re-
sults are also encouraging because one can obtain fast
and very accurate values. For example, the determi-
nation of the numerical solutions for the velocity and
temperature for this paper were obtained in 508 and
100s respectively.
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Figure 4.1: Temperature 6 as a function of space and
time in case b) with w = 10 and & = 0.1.
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