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1. Introdughiion

Lord Rayleigh seems to have been the first one to have
given a theoretical explanation of the oscillations of a
system in which the stiffness'parameter is periodically
varied. In 1887 published a discussion, (151, of sone «f
the types of oscillations of a string whbse tension is
periodically altered. His mention at that time of the
corresponding situation in an eleétric circuit anticipated
the interest to be given to this kind of vibratory motion
some thirty years later in the fields of radio communication
and eledsHesacbustiios.. In 1922, J. R, Carson [7] , discussed,
from the point of view of radiotelephony an actual electric
circuit with inductance and a sinusoidalty varying capaci-
tance. The response of such a circuit is governed by the
two-parameters, second order, ordinary differential egquation

with periedic, coefficient,
{i4e oo5 JEIX" ¥ W= U5 {Lel)

where € and A are real.

The purpose of the present work is to show that,  for
{e] <L, 1he ) axis consists of intervals in which ol 50—
jutions of (1.l1) are bounded, and intervals in which {(1.3)
posseses at least one unbounded solution. Furthermore, our
main goal is to determine the lengths of the intexrvals
where unbounded solutions exist. These 4ntervals will be

czlled instability intervals. Our main result is contained

in the following theorem:
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Theorem 1: The! :length L ©of the n-th instability interval
_—

of the modulated fregquency equation (1.1) is given by:

Ln =0 if n is even {l.2)
{ I ) 2
Ln = nil[ LR J'en+o(en)- if © 18 odd.
8 (n=1)"L!
it &2 1 @Gt 0.8

0<23j<m

Equation (1.2) is a known result, see for example Mag-
nus and Winkler, [13]. Included here for a sake of complete

ness, it naturally appears in the process of proving (1.3).

2. The Modulated Frequency Equation

Let us consider an L-C electrical circuit consisting
of a constant inductance L and a time-varying <capacity C(rt].
Let i be the current and q the charge of the condenser, then,

if no amount of q is removed from the circuit 2t any time,

we have
4 (1,3 o oo {2.1)
dmitbil t sEenaTid
Since
5 e
ar 9
equation (2.1) is transformed into
d2
LC(T) Wq'*‘q =0 (2.2}

Assuming




c(t) = C0 4+ . AC.cos(pt) . (2.3

which, for example, represents the conditions when a sinu-
soidal note of freguency p/2Il is sung in front a condenser

transmiter, one obtains the modulated frequency equation

(146 cos 2B)x" + kX & 0 (f2) " =5—) (2.4)

from (2.2), substituting C(t) by (2.3), and setting

1

G s SE ST = - = - 2 = — 3
(Soo2 7 PT 280 ; X(t) Q(zt/P) ’ U-)O LCO 7

= 2
A= (2wo/p) .

Wwe shall assume in what follows that lel < 1. Fuskthoe~
more, since there is no loss of generality, we shall only
consider € > 0, otherwise, one can change t by t+II/2 obtain

ing the same equation with positive e.

Although equation (2.4) is not singular, division by
1+e cos 2t does not lead to a typical Hill's equation,further
more, the usual expansion of 1A% cos 2%) “4n bower series
by long division and subsequent first oxrder approximation
which yields Mathieu's eguation conduces to erroneous results
as it is shown by (1.2). Howevexr, as for the Hill's equation,
an oscillation theorem, (to be proved somewhere else) 015

validy thathisgiferilng enhs 1 there exist two monotonically

increasing sequences of real numbers.
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such that the modulated frequency equation (2.4) posseses a
solution of period II if and only 1f A = An' B=0,1,2,... and
"a solution of period 20 if and only if 2 = AA, REed L 2,3, 000

The A  and A' satisfy
n n

s L MG e e B e

and the relations

e it O e
n n

N> n+oo

The solutione are bounded in the intervals
(Agedide (X3,2,), (A, ,10), etc

and there is at least one ‘unbounded in the complement.

Thus, in order to determine the lengths of the insta-
bility intervals we only need to determine the values A=A (g)
OF whiéh (2.4) has a periodic solution. To this end, we
apply a combined method of power series in e and Fourier

series in t.

3. Solution of the Modulated Frequency Equation

It follows from the eveness of cos 2t and the linear-
ity of the equation; that when (2.4) has a periodic solution
of any period, I or 2, ft~also has an even and an odd
solution of the same period, therefore, we may consider

only such solutions in determining the An and A;.

We now proceed to solve (2.4) assuming

LR i i



-1 0%

i
jlEts 8

xj(t)sj (3.1)

A(g)

I a.ed {3.4)
B &

Swbatituring x and A in (2.4) by (3.1) and (3.2) respect
ively, we have, upon collecting powers of € and equating to

zero their coefficients:

n = 333
X! + a X, 0 ( )

xg + a X. o (t)

ive ’ i=l

1l
|
:
N
ct
»
l.
[
3
|
™

S o
i g=i

1% 9 {3.4)

Equation (3.3) has the even and odd "periodic solutions

LT/

cos(ao 2t), sin(a

1/2t)
O

/2

These solutions have period 211 if ao is an integer n, and

period II if, in addition, such n is even. Thus we have, with

the superscripts + and - denoting even and odd respectively
£ ,
B F NS el o, (3.5)
o
+
xo(t) = cos nt {3.6)
x;(t) = sin nt (3. 1)

Insolving (3.4) Tor 7 5 1 one obiains, for eagh j, a
solution which is not unique as it involves an arbitrary

solution of the homogeneous equation (3.3). To make them

unique, we require that x(t) satisfy the condition
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1 211
ﬁj x(t)xo(t)dt &= d

(3.8)

0

We now expand x; and x; in the Fourier Series

Baali)s % ook Boateti i _ (3.9)
5 hmg - JB

Rl & I x sin ke (H40)
J E=jovak

Inserting (3.9), (3.10) in {3.4) and €quating coeffi-

cients one obtains

et (3.11)

- 3,12
Sakelt Sdml pal oMLlR)

j
e see + 4 Sl e
o )Xjk+i£l e e sg -2 2, | o s
2.t : :
+hiet2) Sacana Je re (3.13)

where a§ now denotes the coefficient aj in 3.0 correspond

ing to an even or an odd solution respectively.

It follows from £8313) . (BB i= 13 18 that

(3.14)

and

= o (300

Equations (3.5) and { 3 15) 1 38 o8& the values of all the

?ﬁﬁﬂﬁﬁﬁﬁg%
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- +
unknowns when j = 0. Assuming one also has ui and x;k for i

up to some j-1 and every k, setting k = m in (3.13) produces

t:,l. s 21 zi
aj 5 2] "X, _2+(n+?) X,

j-1,n j-1,n+2] o

which is then a known guantity and thus (3.13), (or (3.12)
if k=1), can be used to determine xgk.
Once the a?'s have been calculated, the length Ln of

the n-th instability interval can be found, i.e.

R LR+(€)—A—(€)J = [_E (a;(e)—ag(e»sj] {3.27)

j=0

4. Lemmata

The following Lemmas give the necessary elements to
prove theorem 1 from (3.17). All this lemmas can be proved
by.inguetion. Their pracis, omitted here for a sake of

brevity, will appear somewhere else.

Lemma 1: X;k 0 when n and k are of different parity.

A
Lemma 2: Xjk

It

g 1t k¥ = 2] o k » n#d)

Lemma 3: If n is even, then X;k = X;k fopall G500 ¢ and

k 5.4, 0180 a; = ag fee . all 3.

Lemma 4: For even values of n, X;k = X;k =0 if j is even
and k = n+2+48% for some £ and xf oy = e, aT o ow 7
jk Jk o 3

J 18 odd and k = ntd44{ for some £;

“e shall, from now on, consider the problem only in the

case n odd. Although theorem 1 holds when n=1,3,5, the next




two lemmas would require some modifications if these cases
were included, thus we give the coefficients u§ for n=1,3,5

0 <Jj <nin Table I and proceed to consider n o2
Lemma 5: Let j0 = (n=1)/2. Then:
for .54, jo’

) o
a) a.
J
for some %.

=0 if j is odd, and x;‘fk = 0 if, in addition, k=n:4g

b) x;k EI £ j is even and k=n+2+44 for some %.

For jO <J £ n-l, a) and b) are valid provided K>2(j+1)=n is

required.

e = e ; : 5
Lemma 6 : o = Hx kor &l k if § < ], and for k>2(j+1)-n
if = <.

Corollary: a; = a; f0or 0 £ 4 < p=1,

5. Proof of Theorem 1

According to lemmas 1-3, the instability intervals be-
tween A+(e) and A_(e) with A+(O) = A—(O) = n desappear
when n is even, hence, Ln = 0 and the FTirst poart of the
theorem is proved. Lemmas 5 and 6 and the corollary imply

= e n
Ln = (an an)e 4o (e )

when n is odd. Thus, if a: # a; we have that the first non-

vanishing term is of order n.

In order to‘calculate.ai we apply (3.16) observing

+
that === = 0 because n-1 is even and n+2 > 2(n-2)-n

n—-1,n+2
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and therefore Lemma 5 holds. Hence,

o i
boe et ) oo (4.1)
Using (3.13),
: Ml ey
X e = a.xX A
n—l,n_z n2_ (n_2)2 i=l i n_l-i,n—z

U B e 2,2
+ 2[(n 4) Xn—2,n—4+n Xn—2,n]} : {1.2)
&
We know that az E Uwhen 1 is odd; for i even;, n-1<i is even
and n-2 is a number in the form n+2:4%, moreover, h=2 2

2(n-1-i+l1)-n and lemma 5 can be applied. Condition (3.15)

+
Vields x;_z i 0 on the tight haid-sidecof (4.2)«. . Therefore

o 5 (n-4) 2 ot
n—l,n—2 2[1’)2"'(11"2)2] n—2,n—4

One can obtain, by the same token,

xi - [n—2(s+l)l? e
h=5,0=-28 .Z[hz—(n—2s)zj B=l8+l) ;n~2(8%1]
3 £ .5 % jo—l s (4.3)
Hence
Jed Ve
1 Ln—2 (S+l)j2
e e X (4.4)
fi=l; h=2 jo_l jo_l jo+l,l
2 il [nz—(n—Zs)zj
s=1

We now use (3.13) and Lemmas 4 and 5 to obtain
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% 1 t
X,  — (4.5)
Jotird 2(n?-1) Iyl
and
¥ eu 132 lepi1T0 ok
T oy P 2[h2-(l+25)2J 30—(s+l),l+2(s+l)
Then
Jo=i
I 2
i - a0 [1+2(s+1)] v
T Jg Jo-1 :
2 i [hz—(l+2s)2J
s=0
Using formulas (4.1)-(4.6) backwards, we have
() 2
e in[\n___] ; (4.7)
8 L(n-1)1!
and then
1 nld ~n n
bt -1 T T tlOpt Gio(p ) (4.8)
8 {n=1)t!

_- ~3.234375 ]—9.244792
5 +0.0004 29

3 I m=5
I

.
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