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- INTRODUCTION
This paper serves a twofold purpose. First we
evaluate space-periodic solutions of

ap 2o o 1fad)y ,
Gt i W

using perturbation methods and Fourler
decomposifion. Second, we ewmploy those
solutions to determine progressive-wave
solutions of {1), and discuss some of thewr
properties and physical meaning,

Equation (1), known as the one-dimensional
Karamoto-Sivashinsky equation, was obtamed
by Kuramato 1] 1tis a particular case of the
Michelson-Sivashinsky equaﬁun“jl derived
as a model of flame propagation. In this case,
@ is proportiona to the dimensiordess
perturbation of a flame front, and it 15 n this
context that we shall analyze our results.

Michelsoniq], i a rumerical study, has shown
that when (1] is integrated over an mterval
4 <% <[ [large, wth periodic boundary

conditions, it has a solution funchion Szt of
the form

Dzt =-pt+ dxt), pconstant {2)

Furthermore, for fixed {, ¢{x!] resembles a
guasi-periodic function. In a later paper,
'"I'royIS] proved the existence of steady
solutions of {1},

We shall mvestigate here the case m which
Gzt 15 actally independent of t
Furthermore, we seek functions ¢[x) periodic
with fundamentsl period 2k for some k.

For fixed, given k let
z=kx ze [0,2nk]
fz) =¢ {z/k},

Substituting @ and x m [1) by [2) and [3) we
obtain, after simplifying ke

ze [0,27] {3}

1;2f1"f+f"+éﬁ')2=a r=ddz  (4)

where {{z + 27 )= {[z).

Let us consider the

equation

artificially wodified

RV 4 " +:};{f‘]2 =g (5)

When o=10,{=1{;=01s a solution of {5} for
all walues of A It 5 o straighforward
application of the bifurcation theoreml®] to
show that a 2w-periodic solufton f{z) of (5]
bifurcates from f at & = k. According to the

theorem, f{z), as well as the values of o and A
for which it exsts, can be obtamed
paramefrically a5 f = f{z, 5], A=A (2], o= ofg], n
terms of a parameter g such that {{z,0) = 0,
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A0] = ki, o{0}= 0. The parameter ¢ can he
defined by

In
"71‘ Jtbiz, gaz = e 61
"

In order to determine this solution we employ
a combination of power-series and Fourler-
series ezpansions. Let

flz.g)= 2 fpfz)e" {74)
1=
A= I Ay et hg = ke {7b)
n=0
0= Z gyt (7c)
n=l

and, since the functions f,,{z) must be periodic
of period 27,

o0

fufz) = = fplp) cospz, (8)
=1

iilizing (7a,b,c] and (8) in [5), (6], collecting
powers of £ and harmonic like ferms we
nhtain:

-1 e
=gz ZEmig 1)
e
pip2jin(p) = p?at (0} + glnpl (%)
-l e« sy
Z 2§l tnjerli =60z, (99)
Sl

[6 Kronecker symbol)

where ginp] in {9b) ¢ a function which

98]

\

Equation (9b] defines i,y Using (9¢) with
one obtamns ﬂ[lj = 1 and therefore,
from (3b) whenip =1

=2

Ap-1 = -gin 1) {9d)
Thus, starting with 1 =2 and, recursively, one
determines Ay from {9d], uses (9] to

evaluate 'fn(p] for 1 <p <, [9¢] then fixes

the value of ?n{l) and, finally, uses {9a) to
calculate oy,

For the sake of brevity we refer the reader to
referanice [7] whete ol the steps of the
algorithm are given in detail.

We have implemented the just described
algortthm T a computer program, evaliatng
all the coefficients for n £ 50. Using the ratios
Aond hz['n—i} and 021’1"02(‘{14] and extirapolating
for n = 1000, using rational functions, we
determmed numerical radii of convergence
oulk] and pglk). Both agree to more than six
decimal places , and therefore we shall
mdicate this common vatue by pfk). Smce the
main goal 15 to solve equation (4) rather than
{5), we then determined the value g1 = gy(k)

for which & = 1 1e., Algikl] = 1 The
numerical results indicate that g1{k] < p(k]
only if 063 < k< 1 {Foure 1],
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Figurce 1. The upper curve represents the common radius of

convergence of ofs) and Als) oblained by extrapolation to 1000
terms in {7h,¢) for 0.63 <k < 1. The lower curve represents (k)

such that Mg {k)) = 1.
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If, rather than wsing an artificial A, we
consider K as a parameter in {4, it 15 possible
to prove as before that a periodic solufion
bifurcates from f at k= ky = 1, 0 = 0. Hence,
we proceed as in the previous section, that 15,
we use (6], (Tal,(Th] and (8) n (4], expanding
now k& i terms of £ as

o

fi= 2 kot e | {10)
n=0

We ghtain in this way a system of equations
which can be solved recursively as betore. In
this case ky-1 plays the role of Ay g

The numerical results obtained with these
expansions are essentially the same as those
obtained with the first approach. The present
scheme has two adwvantages over the
previous one. First, no arfificial parameter 15
infroduced in the equation and, second, the
dependence of ¢ on k 15 obtaned
parametrically with just one run of the
programe. The  numerical radi  of
convergence of [fb) and [10) agree, with
common value p = 3.072627 which determines
the minimum value k = 0.795956

As an alternative approach to those described
before, one can substitute the periodic
solutions of {4) by fmiic Fourier sums

N
fifz) = = fip) cos pz, [11)
p=1

Collecting like terms, one obtains the system
of non-lnear algebraic equations :

N-p
p(pé-1)tip) +—;- Z Up+l) fMf(p+) =0 [12a)
=1

which, once solved, defines o by

T
a=oy =7y Z pttip)

Clearty, one can not expect {12a,b), defmed
for 1<p < Nand N <p £ 2N respectvely, to
have nonrivial solutions because # 15 &
system of ZN equations with N unkmowns.
Howewver, if the square system (12a] has a

non-trivial solution, then, the L2 norm of the
residual Ryg 1

B

1?2;”%
g, (p
p=N N

ot

Ry

it

It Ry 15 small, then one canuse {11) a5 a good

approximation to the solution of (4] This
algorithm, when implemented, reproduced all
the numerical results obtained with the
previous approaches, within their range of
validity, with wery small vesiduals . This
scheme 15 faster than the others, mainly
because one small number of terms, N = 10
for example, gives results which are not
different from those obtained with N = 100.
The validity of the approximation is no longer
good as k approaches 0.5, Using this method
wa determined the paramefric curve

o{k), =k)] whete z is the L2 norm of the
approzmate solufion (Le, directly related to
the amplitude of the periodic solution] shown
inf Figure 2. One can chserve in it that the
maximum of gk) 5 attained at k = 0.78 with
£=3.068126 and o = 1498951 The Ilnear
analysis of the stability of the zero solution of

11) vields k = y/2/2 as the wave-number which
gives the maximal amplification. The mezimum
flame wvelocity, o= 16030, 15 aftained at a
larger value of k, namely, k = 0.84 where ¢ =
2.872199 , Tt 15 mteresting to observe that two
flames can travel with the same welocity,
although presenting different periods and
amphitudes.



3. PROGRESSIVE WAVES
Let @ be an arbitrary real numbert, f{z} a 2%
periodic solution of (4] for a given k and
a = olk) the corresponding value of o Let
¢fx.t) be the function defined by

dixt) = fikixz - @),

Straightforwerd sub stitution showes that

o
e i t+ glxt) (13)

is a solution of {1)

Figure 2. 12 norm and flame velocity of cetlular
flames as a functions of the wave-number k.

Since Dixtw) 15 a gne-parameter family of
colutions of {1), its envelope, defined by the
gquation

ag " i
'aazx-—aﬂ—ktf[k{wwm =0

is also a solution of the differential equation.
Using f and k obtained with the first
perturbation scheme, expanding « W power

series g, with

2 =pi0,x1) = 28,

it becomes evident that all higher ot der terms
in £ da not depend o0 X, hence, we can waie

o = zh +WIY
which, in turn, yields the envelape

o= dpgl=g -t (1

Equation {1) could also he solved using a sel-

similarity technique. Following Bar eriblatlBl, if
ohp sptsx =z b =L T the tesuling
equation  POSSESSES the solation, after
returning to the original variables,

11
Bt = Ppsirl = 5

which is the envelope of the one parameter,
plane-flames solutons

; : @t
dizl) =Dglrl) =@~ "Z't,

The logarithmic term in (14] is then due 1o the
progressive wave. Although {14) 15 a solution
af (1], it con not be regarded a5 a flawe, but
rather as a boundary of all possible
progressive waves ohtained by space end
time periodic perturbations. We must
emphasize that this boundary fravels in time al
a slower velocity than the average velocity of
aach individual progressive wave.

It can be shown that the progressive wave
izt fravels at 2 slower pace than the

ravelling wave ¢/xl) if @ > '\,/?; If, on the
other hand, @ < \ﬁt it goes faster. The

velocity is exaclly wif @ = \[ a. In fhis case, we
can write

(i) = VTofz -2t + (ki /20t

1ot h be a fizedbut otherwise arbirary real
number, and consider the solutions z = x(t) of
the equallon



o
Pxt) = x- [-,m]t +ik(z-t]l=h  [1§)

s
&

The total dertvative of {15 with respect to ¢
vields

Figure 3a.Level curves of the surface (x.t). Case
©<\J20.k=0.75,0 = 1.4, 0 = 1.381398

Therefore, if -wk <mn fz), z € [0, Z7] and
@ < \/2_0 then, the curve x{t] is monotonic,
otherwise it has infinite or zero slope at &
finite fime, depending on whether one ar

both inequalities are wiolated [Fgures Ja and
3b).

This can be better understood with the telp

of Figure 3a in which @ < \/—2_0 The level
curves shown in that figure decrease from
right to left, then, if one fixes the level at, tay,
h = [, then one would only see fresh gas. Att
= {1.25 one point of light, A, would appear at 2
= 0, the flame front. This point would travel
toward the right until t #1, when another flame
front would appear at z = 4.13. This second
point will split m two fronts, B and C,
iravelling C to the right and B to the left for a
while, turning B toward the right some time
after its appearance. After this instant one
would observe that in the leftmost region of

fresh gas, the point B would be advancing
mnto the burned gas. Physically this, in an
actual experiment, would be mnterpreted as a
moving mass of gas gong to the right and the
observed velocities of & and B would be
relative velocities. &t t=4 the pomt 4 would
reach the point B and both would deasapear,
that 15, the gas bubble collapses while the
pomt C keeps moving toward the night In

Figure 3b @ > \]55. Although the description

Figure 3b. Level curves of the surface ®(x.t).

Case @2 \/E(_J. k=075, «=19250c= 1381398

of the phenomenon swould be similar if we
choose h = 5, m ttas case, the poird B will
reach the point C and the bubble of fresh gas
swould join the region of fresh gas to the right
of C.

A very mieresting phenomenon takes place
when 0.5 <k < 0.55. In this region ' has two
local minima in 0 £ z £ Zm, Figure 4a . Figwre
4b shows what happens in this cases, when -
wfk < 0 15 greater than the greatest of hoth
minima of {', both regions where ' is negative
generale bent level curves, while the narrow
segment where {' > ) seems to yield better
behaved curves.

4. DISCUSSION OF
CONCLUSIONS

RESULTS AND

We have presented three schemes for
solving the Euramofo-Sivashinsky sgquation,
determmned space-periodic, constant-velocity



solutions and progressive waves solutions. experiments. Acta Astronautica,4,(1877]. pp
The three schemes, within thetr limitations, 1207-1221.

proved to be fast and accurate. The fact that

they solve the Eur amoto-Sivashinsky [4]D. Michelson. Steady solutions of the
squation is encouraging for their application Fur amoto-Sivashinsky equation. Physica 19D

toward the sohation of the full Michelson- {1986 pp 89-111.

i
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Figure 4a. Phase-Plane orbits of the solutions f(z) Figure 4b. Level curves of the surface @(xt).

of equation {4) for 0.5 £k €035 Case @ < V20, k = 050 = 0250 = 0.11147.
: : . ; The two minima in Fig. da correspond to the two

Sivashinsky equation . The numetrical results perturbed zones.

here obtained agree with those previousty

found by other authors , for example 141,

The progressive waves found in fhis paper [5] W.C Troy, :I'he Existence of Steady

copm 1o be new in the literatre. Thelr Solutions  of the Kuramoto-Sivashinsky

hehavior describe fairly well the expected Eqmno?{ . Differential Eguations, 82 {1983)

physical behavior and, once again, this opens pp 263-313.

new possibilifies for similor gquations, like : _ _

those modelling fhin filws [19] [6]M.CG.  Crondal, An introduction {0

ceastructive aspects of bifurcation and the
{mplicit function theorem, M Applications of
Bifurcation Theory, P.H Rabmowitz,ed.,
Academic Press. ilew York, 1977, pp 1-35.

References

[1] Y. Kuramoto and T. Tsuzuki, Persistent
propagation  of concentration waves in
dissipative media far from thermal equilibrivm.
Progr. Theoret. Phys, 55 {1976), pp 356-365.

{7 L Sinay and F.A William, An analytical
approach to the description of nonadisbatc
celtular flames near extinction. SIAM J. Appl.

2] Gl Sivashinsky, Nordinear analysis of Math, 52,2 {1992) pp 416-427.

hjrdr odynamic mstability in laminar flaraes-1.
Derivation of basic equations. Acta
Astromautics,4,{1977), pp 1177-1206.

{8) .1 Barenbiat, Strdlarity, Sel-Stuilarity,
and  Intermediate  Asymptotics. Consultants
Bureau, New York {1979) pp 101-103.

[3IDM. Michelson and Gl Sivashinsky,
Nonlinear  analysis  of hydrodynamic
instability in lammar flames-11. Humerical



