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Abstract

Axisymmetric  tubular laminar  flames  are
investigated in a  near equilibrium diffusion
controlled regime with a thin reaction zone separating
the fuel and oxidizer radial streams. The solution
of this “normal Burke-Schumann like problem”
yields the flame position and  the concentration
profiles for the fuel and oxidizer and, as expected,
the proper stretching variable for future
investigation of the flame structure for large
activation energies. The temperature profile is also

obtained for the classical conditions of Lewis
Numbers equal to unity.

Introduction
The importance of flame-flow interaction in

Combustion Research is undeniable. While premixed
flames have been intensively studied in a wide
spectrum of geometries and conditions'™® this is not
so with diffusive flames. Following the work of
Burke and Schumann’ who set forth the theory of
diffusional combustion and the work of Shvab and
Zel'dovich®, who established the general properties of
diffusion flames, most of the work has been
concentrated in the counter-flow diffusion flames”"°
and in the spherical diffusion flames'""? the former
used by Lifian'® in laying forth the use of the
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activation-energy asymptotics technique for diffusion
flames and the latter because of the fuel drops burning
problems. Cylindrical diffusion laminar flames have
not been studied yet, may be due to the fact stated
by Buckmaster and Ludford” that “the uniformity
of the far field implied by the cylindrical
operator preciudes the possibility of a flux of
oxidant from infinity so that, as in the plane case,
such a diffusion flame cannot exist”. However, this
might not be the case if one chooses a geometry and
conditions as described in the next section which
can be experimentally realized. Hence this work,
which uses Burke and Schumann’s idea of an infinitely
thin chemical reaction zone, i.ec. the combustion
surface approximation as shown by Zeldovich etal’,
to establish the flame position, the temperature and
the concentration profiles to lay the path for future
investigation on the asymptotic structure of these
flames.

Problem Geometry

Consider the sketch shown in Figure 1 where a
stream of gaseous fuel (subscript 2) flows radially
outwards through an infinitely long porous circular
cylinder of radius 7, while the gaseous oxidizer
(subscript 1) is being pumped radially inwards
through  another  porous cylinder of radius 71y,
(r, > >r,), concentric with the inner cylinder.
Assume a single step exothermic chemical reaction in
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which the oxidizer A, and the fuel A, are converted

into the combustion product A, , (v %+ %J_ l i A ah
Vid + v 4y Vi 4 w PUeaTw%)  rer c, "or
where Vv, are the stoichiometric coefficients (i=1,2,3).
The flow is steady, axisymmetric and symmetric ol » on
about the plane z=0. Assuming the usual simplifying + | |4+ QW (6)
conditions*'* the Conservation Equations can be dz\c, Oz
written:
mass: species i, (i=1,2):
+— pv, )= 2)
rar ) 5 (pr.)=0 (6a+ an 1a(Daa,)
r-mom.: v — i R PR i F—t
P o oz ) ror A% or
2
o, v O, Jﬁ!ﬂ
Tér r Oz or a da,
pD -v,W (M(8)
62
18 ov,
rar[ ,u(2 or _._(_ ( ) J]
combustion product, (i=3):
' 0
_2|.12v 21.1(16 +6v,) p(v %Jrvzi) 16( Dr6a3j
r 3 r or Oz 7] 0z ror or
3
3 { (av, Lo ﬂ ©)
oz M\or T Lo o ea
§-mom.: az pD; —= 32 +v;W %
f)"ve LA OV, where v, , v, and v, are the velocity components and
PLY, ar + y +v, oz = L, ps M, h A c, and D are the gas density, pressure,

(@) dynamic viscosity coefficient, enthalpy, thermal

1 a ARA 0 Ov, conductivity, constant pressure specific heat and
A=) YA diffusivity and where Q is the chemical source, a; = p;

rt 5r or Oz oz /p is  the relative concentration of species A,
Z-TTom: (i=1,2,3), and it has been assumed that the reaction rate
for the ith component, W;, can be written in terms of
ov, ov, | op the chemical reaction  rate, W, using the

PV, bT TV, E "é; stoichiometric coefficients v;, so that:

_13( ava_])
T rd or & __W _W F
;o r oz W= A} - %3 (=12) (10)
+i ( ov, 3(1 (. )+3v,D )
oz 3\ror Oz

energy:

2
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where W, = da, /dt, (i=1,2). Also choose a,, , (i=1,2)

to be the initial oxidizer and fuel relative
concentrations, respectively.
The Combustion Surface
Define
LA ay
7= (11)
ViV,
and assume that p D; =pD, i= 12 lie., on either

side of the flame sheet®, Then Equations (7) and (8)
yield

p aﬁ] 10 ( aﬁj
L D -
p(vr 8r+ “oz) ror P r@r

+= pD— 12

Oz & oz (12)

where
a

(r,z)=—""2 ¥V =z (12.2)
Vs

if_ﬂ(r.,z):al vV oz (12.2")
vy

and ]3:0 at the Combustion Surface, r=rg 8,

e, p(r.,z)=0. Since r, >> r, , then condition
(12.a") can be conveniently substituted by

plwo,z)= o VY oz
\E
For the present geometry and away from the
plane z = 0, then p = p(r) only and equations (12),
{12.a) and (12.b) can be written as:

(12.b)

pv, B Lopd Dy 120
and
B(r,) = =0ty (12.d)
P = ot (122)

o aiO
where O, = —
v

(=172).

The velocity field

Introducing independent variables n; such that

2 4 s

n/ =t (13)
i0

where the @, are rate of strain parameters and v, the
kinematic viscosities (i = 1 for the oxidant flow
(ie, forr>r,}and i=2 for the fuel flow (i.e, forr
2 <1<, )). Then the radial velocity, v, , can be written
as

<

PV, T=-Dip Vig fi(N;) (14)

where f, (1;) are streamfunctions. Then Eq. (5) is
transformed in

e ang)] o
ny\ n n n

lim f(n)=
Tl > n‘\t

where the subscript i was dropped for convenience and
whose solution is:

n
fany=120 (16)
Therefore
a (r’ ¥l
v(r) = #’( "'] ,i=12 (17)
2 2

and the axial velocity will be given by

_ f(Y

v.(z)=4a,z

or v,(z)=a:z {(18)

Equation (12.c) can be written as

—f(n)d—*g—d—( —) (19)

where Sc;=pq/pD;
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Let E=mhs, (so that E—& as N Mg, on either
side of the flame). Then equations (19) yield
Ej"+[(1—Ai)+A,‘c:,2]ﬁ’= (20)
() =d/dg

Sc,
where A, = uéﬁn; @1)
and p must satisfy the conditions:
P&, )=0 and
limp=a,
£ 5w for §>&,, (22)
pEp)=0
and pEg)=0,for £, <§ <&y (23)
where

I T S W

E.DO T]S ¥ T]O v;g r2

The solution of Eq. (20) subjected to conditions

(22) is
4 4 ) (4 4
[7(?25 ] 7(2 25]

_—
B CYNTCE T
2 272 °F

. E€>&,

and the solution satisfying (23) is
4 4 z) (ﬁiz z]

[7[2,2é ¥ 2,2§F
o

p zo{ [A; e (‘i j472&2 25)

2°72 Fj 22 °j

where v and [ are the Incomplete Gamma Function
and the Gamma Function
respectively [15].

4

dp

Imposing continuity of —at

[A 4 ) (A 4 Ay }
27 2 ¢
Oyq 2 2

2 2 2
that is, an equation for £, as a function of £, .It can be
shown that, if the fuel and the oxidizer have the
same properties so that A; = A and the variable £ can

be taken as continuous, then the condition for the
existence of a single value of &, is given by;

(ol

O, +0, \2 2

{5)

This is done by solving equation Ep” + [(1-A) +
AE_,2 ] p° =0 with the three boundary coenditions:

Bi(p)=pE,) =0y, & <& <&,
B,(p)=pEr)=0and p(o)=a,,,
for E>E,

Use conditions B, and B, first and then analyse the
condition at infinity [16].

Figure 2 shows pvs and Figure 3 suggests
that, as the initial relative fuel concentration
increases, the flame is pushed away from the inner
cylinder and vice-versa, when it goes down, the flame
wraps around it. Figure 4 shows that if o)y and oy
are held constant, an increase in A wili bring the flame
towards the inner cylinder. Back to Equation (21) it
might be interesting to notice that if

E = E ., one obtains

Ay 26)

)

- (27)
Oy +Cy

Sc;=PriLe; =] then A, = ir;‘ = M
Voi Voi

is a Reynolds Number. Then it may be worth looking

into the behavior of Equation (20) for values of

A; <<, and A;=1.Itcan be easily shown that if

A; << 1, then the solutions for 77 will contain Ei

functions ( i.e., Exponential Integrals's) instead of

, which
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Gamma Functions. If A; = 1 there will be Error
Functions. In both instances they will keep the same
structure as in Equations (24) and (25) as expected.

Relative Species Concentrations and Temperature

Profiles

Recalling that «; = afv, , defining 9=c,/Q, taking
W=k,p'a,a,exp(-E/RT) E = C‘ﬂE ! RO,

(Reference®), then Equations (5)-(7) can be written as:

and

1 da. I 1 d dot
S . | L i
2 Ve Tsenltx ‘t’ng
-Dma o, ex;{—g} (28),(29)
and

1 do a, i d db
— (1) —=0 e =

22 ¢ n.?Pr,-&dé[ dé}

E

—-Dmgo,o, eXp[— 9} (30)

where the Dm,; are Damkohler Numbers defined as

k
Dm, = (_—O_va 5 (EJ
ai a,

(30
Concentration Profiles:
Ifa; =0, fori=1o0r2 thend is the solution of
1 do a, 1 d{_ db
_7(5 2 1)_2’0( } (31.a)
28 g Mg Pr & diNT dE

and o j#1, satisfies

do 2 d( daij
L o, —=| (lb
& niSe, di\

Recalling that A, =S¢, ng~ /2, then Eq. (31.b) can be
written as

-7 -1

d
Lo +[(1-A)+ 45 /=0, ()= &
with the conditions
oy(1.)=0,  ax(1)=0, oxE)=e, and

5

lima, = o,

£ > w

This yields

L] §>€I
a, =0, & =& <E, (33)
and
A; Az zj (Az Az 2)
Y[z’zi Yz’zi”_
R N, A A
2 22 | 2 2 g2
Y[z’zé”} Y[z’zg(’}
£y, <€ <, (34)
o, =0, &>&,

£, can be obtained from

dot
ds

do,

Zid

E ks, EE,

its solution yielding expression (26) for &,, as before.

Temperature Profiles

Equation (31.a) can be written as

0" +[(I-B)+BE'P'=0 =12 @3
2
ns Pr;
B = 36
' 25&) ( )
Subjected to the conditions
1=1,08(Ep ) =6, B(e0) =0y (37)
1=2,08(5.)=0; , 6(&y) = 0y (38)
yielding
B: Bl 2 BI B| 2
\"’(2 Th )'Y(z ’ 2é““}
o) T{Ba [B, By 009
22
s E>8,
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)
)

(40)

B, B, QJ (Bz B,

v(,é Yl

6=(,-6,) 2’2 2°2
R X (Bz B,

Brgi)y [_B_z 5
2°2°F 272
Eo<§ <&

It has been assumed that p,= p on either side of the

flame (this is a consequence of defining n through
Equation (13) instead of taking it as

i 25: rp
2 4 i
n?=(- 1)[—} R
Vi J;‘ Pio

as shown in Reference {1]. Then, if Lewis Numbers on
both sides of the flame sheet are unity , ie., Le; = 1,
and iIf A; =B, (i=1,2), equations (28), (29) and (30)
yield [8]:

—-L(0)=L(a,)=a,0,Dmexp(-E /9)
(41)

+0,,,

and
~L,(0)= L,(a,) =0, Dm, exp(~E /8 )
(42)

where L is the differential operator [8]

1 d* 1|1 ] d
L;= 2 2+_|:_(‘52_l)+ 2:1_
Py &% 12 Prm, Jdg

(43)

Then
Li(@+a) =0, i=1,2 (44)
The discontinuity in the heat flux at the

combustion surface can be found by integrating (44)
across the reaction surface® so that

do ‘ do ' do., |
P L T [ P EEp,
d‘lé £ g d& ¥ dé ¥
da,
s (45)
then, if A, = A ,,
Uy Uy Cyg + 0y
Op=—""""0 ,+— 0, +———
G Uy Qo+ 0y Oy + 0y

6

(46)

If the fuel and the oxidant have the same

initial dimensionless temperatures, i.e., if 0,,=0,,=6,
then

oL, .0
GF = 90 + 10™> 20

Qyp + Uy
as expected [8].

47

Di ion of Resul { Conelusi

This problem was examined following a “Burke
Schumann” kind of approach, i.e., mass concentrations,
temperature profiles and fuel consumption were
calculated considering the instance of a combustion
sheet i.e., of an infinitely thin reaction zone which is
expected to occur when Dmy—oc. It was also assumed
that on either side of the flame an incompressible
flow situation prevailed and that the flow field was
known in advance so that, in a first approximation,
v, (r) was independent of the temperature near the
reaction zone. This is acceptable for low Mach
Number flows and, besides, it leads to zeroth order
approximation results of matched asym}ptotic analysis
which might also be done. It is known > '° that as the
oxidant and the fuel enter the reaction zone after
being heated by the heat flux from that zone, the
reaction rate can be assumed to be high. This high
reaction rate plus the limitation imposed on the mass
rate of material consumed by the amount of gases
being supplied, lead to small width of the reaction
zone and to small fuel and oxidant concentrations
within it. In the limiting case of an infinitely fast
reaction this reaction zone becomes a geometric
surface where the fuel and oxidant concentrations are
zero. This is correct if the reaction rate is much faster
then the rate of diffusion of the reactants and it is
asymptotically correct as the ratic between the
characteristic times of reaction and diffusion goes to
zero * A consequence of this model is that the

reactant  fluxes entering the flame are in the
stoichiometric ratio’.  As expected, the flame
temperature calculated choosing Le; = 1,1 = 1.2,

assuming no heat losses, yieided the combustion
temperature for the stoichiometric fuel/oxidant
mixture ratio’, However, if Dm, and Dm, are finite,
leading to the occurrence of a rcaction zone of finite
thickness whose structure should be investigated, then
aconventional asymptotic technique could be used.
In particular, if Dm; >> | the temperature and
concentration distributions in the combustion surface
approximation are the first order terms of the
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asymptotic expansions in 1/Dm; in the outer regions. If
the flame structure is to be studied, then it is proper to
follow Williams’s suggestion of introducing a
coupling function [ and 2 mixture fraction Z,
choosing then the latter and the Temperature T to
be the main variables”. Finally notice that the
proper stretching factor for this problem becomes
Lifian’s stretching variable in his classical counter
flow problem', if the parameters A, defined in
Equation (21) are taken to be equal to one. This is
shown in Appendix .
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Appendix
N he Coupling Fungtions § and Z for 4
problem,
Define B and Z as in Reference':
Bzao—aF (A'l)
B B Bo 0
L=—"— (A-2)
B Fo Bo,o

where O = =a,/'W,v,, Oy = -g8;/w, v, (w; being the
molecular weight of species i), Bro = - a5y
fw, andBgy =tagg =-ay/w, , so thatZ=1in
the fuel stream and Z=0 in the oxidant stream. Both
Z and [5 are conserved parameters, i.e., L, (B) = L,
B) = L, (Z) = Ly(Z) = 0. Following the earlier
procedure and assumptions one can write

, dZ ., d _dz

G -D—=4" ()
dg de " dg

where A; =npSc/2, i = 1,2 is to be solved with the
boundary conditions
ZEr )=Z, , Z{0)=0, i=1]
Z(gF-)=Zc: Z(éo)zov i=2.

=.(}'20

(A-3)

(A-4)
(A-3)
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The above yields solutions of the type of

Ew PR
Z=a+by[Ai/2, (A2)E], (A-6) :
where a and b are constants, as it can be easily seen :
from Equations (39) and (40) or (33) and (34). Then )
it is obvious that if one chooses Lifién’s , A
technique'® to study the flame structure by doing the &
Activation Energy Asymptotics Method then the oo e,
proper stretching variables for this problem would Figure 3: Flame Position, §, , v§
be Initial Fuel Concentration, &,/ ,
2 . For A=A,

X=y[ A2, (A2)E"] i=1.2 (A-7)
Notice that if A; << 1, these stretching variables
become

X =Ei [(A;/2)E]] (A-8)

and if A[ = Az =1 then

X = erfe[€ /2] (A-9)

which is Lifian’s stretching variable for the counter

10
flow problem . Figure 4: Concentrations, o, , vs &
A pp=.06, 0yx=.03

"1 ,
[ S N0 T T A
/)i}/j/i N
)i PE
N R Y
+ijl4{§i

Figure 1: Problem Geometry
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