0186

SOME SECOND ORDER EFFECTS IN GYROSCOPES INFLUENCED BY DRAG

Jerzy T. Sielawa

Demétrio Bastos Netto

Leon R. Sinay

INPE - Instituto de Pesquisas Espaciais

LCP - Cachoeira Paulista - SP - Brazil

1. Introduction matter (glabale not considered massless), and

Consider a gyroscope consisting of a rotor and two gimbals (see Fig. 1).

Fig. 1 - Reference position of a gyroscope.

The external gimbal is connected with an external case at points A_1 and A_2 by a pair of axes. At points B_1 and B_2 the external gimbal is connected with the internal one by a second pair of axes.

tion (of the external gimbal) through angle a, are

Finally, the rotor is connected at points C_1 and C_2 with the internal gimbal by a third pair of axes.

All axes allow free rotation.

The aim of this work is to establish the formulation of equations expressing the influence of

- (i) gimbal motion (gimbals not considered massless), and
- (ii) air drag

on the rotor motion.

Dyadic calculus is consistently used during the derivation of equations, [1].

2) GYROSCOPE POSITIONING AND MOVEMENT

To establish the gyroscope position during its movement, several coordinate systems will be chosen:

- S_0 The origin coincides with the center of mass of the gyroscope. z_0 axis coincides with A_1 A_2 , x_0 and y_0 are chosen arbitrarily, fixed relative to the case.
- S_A Fixed on the external gimbal, with $z_A = z_0$ and y_A coinciding with $B_1 B_2$.
- S_B Fixed on the internal gimbal, with $y_B = y_A$ and z_B coinciding with C_1 C_2 .
- S_R Fixed on the rotor: $z_R = z_B$; x_R and y_R in the rotor plane.

The gyroscope can be conducted from its position of reference, $S_{\rm O}$, to its ambitrary position, $S_{\rm R}$ by means of:

- (i) Rotation (of the external gimbal) through angle ϕ , around A_1 A_2 .
 - (ii) Rotation (of the internal gimbal) through angle Θ , around B_1 B_2
 - (iii) Rotation (of the rotor) through ψ around C_1 C_2 .

The angles ϕ , Θ , Ψ (known as Euler Angles) determine completely the gyroscope position at any instant. Their rates $\dot{\phi}$, $\dot{\Theta}$, $\dot{\Psi}$ determine, respectively, angular velocites of

- (i) precession
- (ii) nutation
- (iii) spin

Fig. 2 - ϕ , Θ and Ψ .

3) COORDINATE SYSTEM TRANSFORMATION 5

Observe that transformation $S_0 \rightarrow S_B$ consists of

- (i) rotation through ϕ around \hat{z}_0
- (ii) rotation through Θ around the new position of $\hat{y} = \hat{y}_A$

This way, the transformation matrix \mathbf{L}_{BA} (i.e. from \mathbf{S}_{A} to \mathbf{S}_{B}) is

$$\mathbb{L}_{BA} = \begin{cases} \cos\Theta & 0 & -\sin\Theta \\ 0 & 1 & 0 \\ \sin\Theta & 0 & \cos\Theta \end{cases} \begin{cases} \cos\phi & \sin\phi & 0 \\ -\sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{cases} = \begin{cases} \cos\Theta & \cos\Theta & \sin\phi & -\sin\Theta \\ -\sin\phi & \cos\phi & 0 \\ \sin\Theta & \cos\phi & \sin\Theta & \sin\phi & \cos\Theta \end{cases}$$
(1)

In particular

$$\hat{z}_{o} = (-\sin\Theta) \hat{x}_{B} + (\cos\Theta) \hat{z}_{B}$$
 (2)

Transformation matrix L_{RB} (i.e. from S_B to S_R) is

$$\mathbb{L}_{RB} = \begin{cases} \cos \Psi & \sin \Psi & 0 \\ -\sin \Psi & \cos \Psi & 0 \\ 0 & 0 & 1 \end{cases}$$

This way

$$\left\{ \begin{array}{l} \widehat{x}_R \\ \widehat{y}_R \\ \widehat{z}_R \end{array} \right\} = \left\{ \begin{array}{l} \cos \Psi \ \sin \Psi \ 0 \\ -\sin \Psi \ \cos \Psi \ 0 \\ 0 \ 0 \ 1 \end{array} \right\} \left\{ \begin{array}{l} \widehat{x}_B \\ \widehat{y}_B \\ \widehat{z}_B \end{array} \right\} = \left\{ \begin{array}{l} \widehat{x}_B \cos \Psi + \widehat{y}_B \sin \Psi \\ -\widehat{x}_B \sin \Psi + \widehat{y}_B \cos \Psi \\ \widehat{z}_B \end{array} \right\}$$

4) ANGULAR VELOCITIES

The angular velocity of S_B relative to the case (i.e. S_A)

is

$$\overset{\rightarrow}{\omega}^{B/0} = \phi \, \hat{z}_A + \hat{o} \, \hat{y}_B \tag{3}$$

In particular, substituting (2) into (3), one gets

$$\omega^{B/O} = -(\sin\Theta) \hat{\varphi} \hat{x}_B + \hat{\Theta} \hat{y}_B + (\cos\Theta) \hat{\varphi} \hat{z}_B$$
 (4)

The angular velocity of the rotor relative to S_R is

$$\dot{\omega}^{R/B} = \dot{\Psi} \hat{z}_{R}$$

This way one gets

$$\vec{\omega}^{R/O} = \vec{\omega}^{R/B} + \vec{\omega}^{B/A} = -(\phi \sin\Theta) \hat{x}_B + \Theta \hat{y}_B + (\Psi + \phi \cos\Theta) \hat{z}_B$$
 (5)

5) MOMENTS OF INERTIA!

The dyadic of inertia of the three parts are:

$$\vec{J}_{R} = I_{R}^{\dagger} \hat{x}_{R} \hat{x}_{R} + I_{R}^{\dagger} \hat{y}_{R} \hat{y}_{R} + I_{R}^{*} \hat{z}_{R} \hat{z}_{R}$$

$$= I_{R}^{\dagger} (\hat{x}_{B} \cos \Psi + \hat{y}_{B} \sin \Psi) (\hat{x}_{B} \cos \Psi + \hat{y}_{B} \sin \Psi) + I_{R}^{\dagger} (-\hat{x}_{B} \sin \Psi + \hat{y}_{B} \cos \Psi) (-\hat{x}_{b} \sin \Psi + \hat{y}_{B} \cos \Psi) + I_{R}^{*} \hat{z}_{B} \hat{z}_{B}$$

$$= I_{R}^{\dagger} \hat{x}_{B} \hat{x}_{B} + I_{R}^{\dagger} \hat{y}_{B} \hat{y}_{B} + I_{R}^{*} \hat{z}_{B} \hat{z}_{B} \qquad (6)$$

Internal gimbal

$$\vec{J}_{B} = I_{B}^{\star} \hat{x}_{B} \hat{x}_{B} + I_{B}^{\dagger} \hat{y}_{B} \hat{y}_{B} + I_{B}^{\dagger \dagger} \hat{z}_{B} \hat{z}_{B}$$
 (7)

External gimbal

$$\hat{J}_{A} = I_{A}^{*} \hat{x}_{A} \hat{x}_{A} + I_{A}^{'} \hat{y}_{A} \hat{y}_{A} + I_{A}^{''} \hat{z}_{A} \hat{z}_{A}$$
(8)

(12 X X X + 1) 3 X Y + 1" 2 Z Z) . (6 1)

 $= \tilde{x}_{R}^{-1} I_{A}^{**} + \sin \theta + \tilde{I}_{R}^{-1} I_{A}^{**} + \cos \theta$.

6) ANGULAR MOMENTUM

One has

$$\vec{h} = \int_{\vec{R}} \vec{x} \cdot \vec{R} dm = \sum_{i} (\int_{\vec{m}_{i}} \vec{R} \cdot \vec{R} dm) = \sum_{i} \vec{h}_{i}$$

This means that the contributions of all parts are additive

The contribution of

Rotor

$$\hat{h}_{R} = \hat{J}_{R} \cdot \hat{\omega}^{R/0} = (I_{R}^{\dagger} \hat{x}_{B} \hat{x}_{B} + I_{R}^{\dagger} \hat{x}_{B} \hat{x}_{B} + I_{R}^{\star} \hat{z}_{B} \hat{z}_{B}) .$$

$$\cdot \left[-\hat{x}_{B} \hat{\phi} \sin\Theta + \hat{y}_{B} \hat{\Theta} + \hat{z}_{B} (\hat{\Psi} + \hat{\phi} \cos\Theta) \right]$$

$$= \hat{x}_{B} (-I_{R}^{\dagger} \hat{\phi} \sin\Theta) + \hat{y}_{B} (I_{R}^{\dagger} \hat{\Theta}) + \hat{z}_{B} [I_{R}^{\star} (\Psi + \hat{\phi} \cos\Theta)] \tag{9}$$

Internal gimbal and the demonstration of demonstration of details.

$$\vec{h}_{B} = \vec{J}_{B} \cdot \vec{\omega}^{B/O} = -\hat{x}_{B} I_{B}^{*} + \hat{y}_{B} I_{B}^{'} + \hat{y}_{B} I_{B$$

External gimbal

$$\vec{h}_{A} = \vec{J}_{A} \cdot \vec{\omega}^{A/O} = (I_{A}^{*} \hat{x}_{A} \hat{x}_{A} + I_{A}^{'} \hat{y}_{A} \hat{y}_{A} + I_{A}^{''} \hat{z}_{A} \hat{z}_{A}) \cdot (\dot{\phi} \hat{z}_{A})$$

$$= I_{A}^{''} \dot{\phi} \hat{z}_{A} = -\hat{x}_{B} I_{A}^{''} \dot{\phi} \sin\Theta + \hat{z}_{B} I_{A}^{''} \dot{\phi} \cos\Theta \qquad (11)$$

This way, the total angular momentum can be written

$$\vec{h} = P \hat{x}_B + Q\hat{y}_B + R\hat{z}_B$$
 (12)

tions which are not immediately

where

$$\begin{cases} P = -I_{\alpha} & \phi \sin \Theta \\ Q = I_{\beta} & \Theta \\ R = I_{R}^{*} \Psi + I_{\gamma} & \phi \cos \Theta \end{cases}$$

and where

$$\begin{cases} I_{\alpha} = I_{R}^{"} + I_{B}^{"} + I_{A}^{"} \\ I_{\beta} = I_{R}^{"} + I_{B}^{"} \\ I_{\gamma} = I_{R}^{"} + I_{B}^{"} + I_{A}^{"} \end{cases}$$

7) EQUATIONS OF MOVEMENT (EULER EQUATIONS)

As is well known, one has

$$\vec{h} = \vec{G}$$
 . A more convenient way is to express h in the inertial

where a directly integrable.

h = total angular momentum

G = resultant of external torques

and where the symbol $(\dot{})$ denotes the inertial time deviration (d/dt).

Expressing equations in a non-inertial system, say $S_{\rm R}$,

$$\vec{h} = \vec{h}^B + w^{B/O} \times \vec{h}$$

$$(14)$$

$$(556) \times \sin \theta \times \sin \theta \times \theta$$

where the symbol $(\stackrel{\Rightarrow}{\circ})^B$ denotes the time derivative as determined by the observer in S_B, that is - see eq. (12):

$$\dot{\hat{h}}^{B} = \hat{p} \hat{x}_{B} + \hat{Q} \hat{y}_{B} + \hat{R} \hat{z}_{B}$$

Even though this is a standard procedure of getting Euler equations, resulting: in,: " :! : !!!!

$$\begin{cases} \dot{P} + R\dot{\Theta} - Q\dot{\phi} \cos\Theta = G_{X_B} \\ \dot{Q} + P\dot{\phi} \cos\Theta + R\phi \sin\Theta = G_{Y_B} \\ \dot{R} + P\dot{\Theta} - Q\dot{\phi} \sin\Theta = G_{Z_B} \end{cases}$$
(15)

cosp. - I. O sino + 15 V sino c

or, after some algebra, in

$$\begin{cases} -I_{\alpha} \phi \sin\Theta + (I_{\gamma} - I_{\alpha} - I_{\beta}) \phi \Theta \cos\Theta + I_{R}^{*} \Psi \Theta = G_{x_{B}} \\ I_{\beta} \Theta + (I_{\gamma} - I_{\alpha}) \phi^{2} \cos\Theta \sin\Theta + I_{R}^{*} \Psi \phi \sin\Theta = G_{y_{B}} \\ I_{R} \Psi + I_{\gamma} \phi \cos\Theta + (I_{\alpha} - I_{\beta} - I_{\gamma}) \phi \Theta \sin\Theta = G_{z_{B}} \end{cases}$$

 G_{z} = 0, integrating the above one gets, this way, second order equations which are not immediately integrable.

A more convenient way is to express h in the inertial system, S_0 , then no $\ddot{\omega}$ x \ddot{h} term will be required and equations of motion will be directly integrable.

1 cose +c2 sine)(sine0 + 1 cose0)+c 10-14 sinecose)

Of course, one has

$$(\vec{h})_0 = L_{0B} (\vec{h})_B$$

where $(\vec{h})_0$ and $(\vec{h})_B$ express column matrices composed of the components of angular momentum, S_0 and S_B , respectively.

Thus, see eq. (1)

After some algebra, Euler equations can be written as

$$\frac{d}{dt} \left\{ (I_{\gamma} - I_{\alpha}) \stackrel{.}{\phi} \cos\Theta \sin\Theta \cos\phi - I_{\beta} \stackrel{.}{\Theta} \sin\phi + I_{R}^{*} \stackrel{.}{\Psi} \sin\Theta \cos\phi \right\} = G_{x_{0}}$$

$$\frac{d}{dt} \left\{ (I_{\gamma} - I_{\alpha}) \stackrel{.}{\phi} \cos\Theta \sin\Theta \sin\phi + I_{\beta} \stackrel{.}{\Theta} \cos\phi + I_{R}^{*} \stackrel{.}{\Psi} \sin\Theta \sin\phi = G_{y_{0}}$$

$$\frac{d}{dt} \left\{ \stackrel{.}{\phi} (I_{\alpha} \sin^{2}\Theta + I_{\gamma} \cos^{2}\Theta) + I_{R}^{*} \stackrel{.}{\Psi} \cos\Theta \right\} = G_{z_{0}}$$

$$(17)$$

The above equations can be, now, immediately integrated and, since they will result in a system of linear equation in ϕ , Θ , Ψ , can also be solved with respect of these variable.

8) TIME RATES OF EULER ANGLES WITH EXTERNAL TORQUES ABSENT

Assuming $G_{X_0}=G_{Y_0}=G_{Z_0}=0$, integrating the above equations and solving them for $\dot{\phi},\dot{\Theta},\dot{\Psi}$, one gets, after some manipulations.

$$\dot{\Theta} = \frac{1}{I_{\beta}} (c_1 \sin\phi + c_2 \cos\phi)$$

$$\dot{\Phi} = \frac{1}{I_{\alpha} \sin\Theta} \{ c_3 \sin\Theta - (c_1 \cos\phi + c_2 \sin\phi) \cos\Theta \}$$

$$\dot{\Psi} = \frac{1}{I_{R}^* \sin\Theta} \{ c_1 \cos\phi + c_2 \sin\phi) (\sin^2\Theta + \frac{I_{\gamma}}{I_{\alpha}} \cos^2\Theta) + c_3 \frac{I_{\alpha} - I_{\gamma}}{I_{\alpha}} \sin\Theta \cos\Theta \}$$
(13)

 c_1 , c_2 and c_3 can be determined from initial conditions. Without loss of generality, one can assume $c_1 = 0$.

9) AIR DRAG DUE TO THE ROTATING DISK

Rotating disk produces a moment dué to the air drag in $\boldsymbol{\hat{z}}_R$ direction.

To estimate the drag in turbulent flow (which is our case), choose 1/7 power for velocity distribution.

Centrifugal force per unit volume is $p r w^2 [2]' (\omega = \text{angular})$ velocity) and the centrifugal force acting on a volume dr x ds x δ ($\delta = \text{comdary layer thickness}$) becomes $\rho r w^2$ ds dr δ . The shearing stress τ_0 forms an angle Θ with the tangential direction and its radial component must balance the centrigal force. Hence

$$τ_0$$
 sinΘ dr ds = $ρrw^2$ δ dr ds

or.

$$\tau_0 \sin\Theta = \rho r \omega^2 \delta$$

Using analogy with flat plate, one has

$$\tau_0 \cos\theta \sim \rho(\omega r)^{7/4} (v/\delta)^{1/4}$$

 $(U_{\infty} \text{ substituted by rw})$. Then

$$\delta \sim r^{3/5} (v/\omega)^{1/5}$$

The torque becomes

$$M \sim \tau_0 R^3 \sim \rho R w^2 (v/w)^{1/5} R^{3/5} R^3$$

or

$$M \sim \rho U^2 R^3 \left(\frac{v}{UR}\right)^{1/5}$$

where

U = WR.

Von Karman using the 1/7 power law for the variation of the tangential velocity component through the boundary layer showed that, for a disk wetted on both sides, the viscous torque is equal to

$$2M = 0.073 \ \rho \omega^2 \ R^5 \left(\frac{v}{\omega R^2} \right)^{1/5} \tag{19}$$

Thus, c_M becomes

$$c_{M} = \frac{0.146}{(Rey)^{1/5}}$$

This result shows good agreement for Rey > 3×10^5 .

REFERENCES:

- 1. GOLDSTEIN, H. Classical Mechanics, II ed. Addison-wesley, 1980.
- 2. SCHLICHTING, H. Boundary-Layer Theory, VII ed. McGraw-Hill, 1979.

FI VS TIME

k=169. 1g=1r=338.

FI VS TIME

$$--- A = B = C = D = D$$

$$--- A = B = C = D = 0$$

$$--- A = B = C = D = 0$$

PSI / PSI-DOT

THETA / THETA-DOT

A = B = C = D = 0

PSI vs TIME

PSI-DOT vs TIME

$$--- A = B = C = D = 0$$

THETA-DOT VS TIME

(giroU2)

$$--- A = B = C = D = 0$$

THETA vs TIME

(giro02)

