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1. Introduction
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Consider a gyroscope consisting of a rotor and two
gimbals (see Fig. 1). ;

Fig. 1 - Reference position of a gyroscope.

The external gimbal is comected with an external case at
points A, and A2 by a pair of axes. At points B1 and BZ the external
gimbal is connected with the internal one by a second pair of axes,
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Finally, the rotor is connected at points C1 and C2 with the internal
gimbal by a third pair of axes.

A1l axes allow free rotatiqn.

: The aim of this work is to establish the formulation of
equations expressing the influence of

(i) gimbal motion (gimbals not considered massless), and
(ii) air drag =

on the rotor motion. /

of equations, [1].

2) GYROSCOPE POSITIONING AND MOVEMENT

To establish the gyroscope position during its movement,
several coordinate systems will be chosen:

So - The origin coincides with the center of mass of the gyroscope.
2, axis coincides with A1 AZ’ Xy and Y, are chosen arbitrarily,
fixed relative to the case.

Sp - Fixed on the external gimbal, with Zp =2, and Ya coinciding with

B1 BZ'

Sg - Fixed on the interral gimbal, with % Y, and ZB coinciding with

C1 C2.

SR - Fixed on the rotor: Zp = Zg i Xp and yg in the rotor plane.

The gyroscope can be conducted from its position of
reference, SO, to its ambitrary position, SR by means of:

Dyadic'calculus is consistently used during the derivation =~
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(i) Rotation (of the external gimbal) through angle ¢, around

A1 A2.

(i1) Rotation (of the internal gimbal) through angle ©, around -

By B,

(iii) Rotation (of the rotor) through y around c, C,.

,

The angles ¢, ©, ¥ (known as Euler Angles) determ1ne

completely the gyroscope position at any instant. Their rates ¢, B4 w
determine, respectively, angular vel?c1tes of

(i)  precession
(i1) nutation
(i11) spin

Fig. 2 - ¢, ® and V.
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3) COORDINATE SYSTEM TRANSFORMATIONS

Observe that transformation S0 -+ SB consists of

(i) rotation through ¢ around ?0

(i1) rotation through @ around the new position of y = yA

to f;

This way, the transformation matrix uBA (i.e. from Sh
Sg) is |
[cose 0 -sim cos¢ sin¢ 0 /
u‘BA = 4 0 1 0 -sing cos¢ 0 ‘=
_\sine 0 coso 0 0 1

(cosO cos cosO sing -sind | I
= { -sing cos 0 : L)
(S1n@ cos$p sin@ sing  cosO '

In particular

1w (-sino) Xy + (cos0) Zg ‘ (2)
‘ Transformation matrix[LRB (i.e. from Sy to SR) is
cosY sinY 0
= {-sin¥ cosy 0
u’Ra
0 0 1
This way : |
TR C?SW sinY 0 TB fB c?sw + XB siny 1
{R = {-sin¥Y cosY 0 {B = ey s1nW‘+ yB'cosw
zR 0 0 1 zB zB




4) ANGULAR VELOCITIES

The angular velocity of SB relative to the case (i.e. SAﬂ'

is
w09z + 07, - (3)

In particular, substituting (2) into (3), one gets

@0« (sin0) b Ry + 07y + (cos0) $ 2., Ll
; B i

The angular velocity of the rotor relative to SB is

+R/B bt 5
W = ¥ ZB

This way one gets

Sl giE BB ) i) Xg + 0 ¥g + (¥ + ¢ coso) Zg (5)

5) MOMENTS OF INERTIA!

The dyadic of inertia of the three parts are;:

Rotor
=2 S i o
I = IR g *p * I Y Yp * Ip 23 Zp

2 = Ip (xB cos¥+y, s1n‘{')(xB cos¥+yy sinY) +
(j/—— + 1p (-xB 51nW+-yBcosW)(-xb sin¥+yg cosY)+
IR + [ g 25
: R eoll i R 1Ny By ies 3 (6)
R™B "B BB 8 R85 B




Internal gimbal

: . |
i = s o i 5 - s -~ -
$ % Jp = 15 Xy Ry + Ig Jp T + 13'Z3 25 s

External gimbal

A% & - -~

Ya :

/x“.

6) ANGULAR MOMENTUM

One has
" 7 ey > :* = :* >
h=JRdem=Z([Rdem)=Zh

S
~—rt ; lll]

This means that the contributions ofall parts are additive

i

The contribution of

Rotor

-+ h
= 5 =+R/0 = (= S : ;‘
J = (Ig X5 X5 + IR Xg Xg + I Zy zB) ; -

=~

*x
R
« |-Xg ¢ SN0 + §p 0+ Z5 (Y + ¢ cos@)]

= EB (-Ié ¢ sin0) + yB (Ié é) & EB [IE (W-k$ c0s0)] (9)
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"A/O = foi e nm s 3
@77 = (IF Xy Xy + InYaJp + 1 23 2,)

= IA‘ ¢ EA = - ‘B IA' @ sin® + EB IA' $ c0s0
_ % |
This way, the total angular momentum can be

=5
n
-

Xg + QyB +szB

where

sino

L

un

Pt

™
C-RNOXE >3

I (o{o1]C]
+ Y ()

and where

x ! * N
Ia = IR + IB + IA
1 ] F

R te
I.Y & Iﬁ o+ I”+ III

+
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7) EQUATIONS OF MOVEMENT (EULER EQUATIONS)

As is well known, one has

i +
h=6
where
h = total angular momentum
i v
G = resultant of external torques

- . . = |. n.
= -Xg IE ¢ 51n0-+¥B IB G-+zB IB ¢ cosO

(10)

(6'2p)

Wit

written: » 
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and where the symbol (4) denotes the inertial time deviration (d/dt).

-~

Expressing equations in a non-inertial system, say SB' &
one has:

. |
Rah® e W03 ! -

bty

where the symbol (ﬁ)B denotes the time derivative as determined byj'the“tf'
observer in Sge» that is - see eq. (12):

|

TB ° ° o o
g =g+ Qi +RE ]
Even though this is a standard procedure of getting Eu]etk__; 

equations, resWlting jn,: =~ ' i _ : .

P 4 10 - 0b tost = G
Q + Pd coso + Ro sind = G

& Sl reae Y
R+ PO -Q¢ sind = G
‘g

or, after some algebra ,in

3 ® 9 4 . . L] L] * . L =
Ia ¢ sino + (1Y Ia 18) ¢ O cosO + IR Y0 GXB

= ; . _ b
IB 0 + (IY Ia) ¢° cosO sin® + I* ¥ ¢ sind GyB

R

IB - IY ¢ 0 sin@ = GZB

Ip ¥ + IY ¢ cosO + (Ia -
one gets, this way, second order equations which are not immediately
integrable,

: -+
A more convenient way is to express h in the inertial

system, So? then no & x W term will be required and equations of motion
will be directly integrable.

Of course, one has

e
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where (H) and (F) express columnmatrices composed of the components
of angular momentum " S, and Sg» respectively.

Thus,see eq. (1)
cosO cos¢  -sing sin@ cos¢] ‘[P
(ﬁ)0= cosO sing cos¢ sin@ singy -<Q

- 5ino 0 cosO - R

After some algebra, Euler equations can be written as

/

4 {(I -1 )-m cosO sin@ cos¢ - I é sing + IE Q sind cos¢} =G
T R 4

d . " 4 ] % ° : 5

= {(IY Ia) ¢ cos® sind sing + IB 0 cos¢ + IR ¥ sin@ sing Gyo
st ho : an : -

EE { ¢ (Ia $in20 + IY €0s20) + Iﬁ Y cos@} = hzo (17)

The above equations can be, now, immediately 1ntegrated

and, since they will result in a system of linear equation in ¢, O P 2
can also be solved with respect of these variable.

8) TIME RATES OF EULER ANGLES WITH EXTERNAL TORQUES 'ABSENT

Assuming Gy, = Gy = Gz, = 0, integrating the above
equatiensand solving them for $,0,¥%, one gets, after some manipulations.

0 = ity (c1 sing + Cy cos¢)

Ig
¢ = 1 { Cs sin® - (c1 cos¢ + c, sing) cosO }
Iusine
3 I 5
P ——l————-{ C, C0S$ +C, Ssing)(sin20 +—L cos20)+c o IY sin©cosO}
*ed 1 2 3
IR sS1no 1(1 1y

(18)
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Cys and cy can be determined from initial conditions. Wthout loss of
generality, one can assume c, = 0.

—

9) AIR DRAG DUE TO THE ROTATING DISK

Rotating disk produces a moment dué to the air drag in
ER direction.

To estimate ‘the drag in turbulent flow (which is our case),
choose 1/7 power for velocity distribution. .

Centrifugal force per'unil volume is ¢ rcul[ZJ (W = angu]ar ‘
velocity) and the centrifugal force acting on a velume dr x ds x §
(§ = comdary layer thickness) becomes prw? ds dr 8. The shearing stress
T, forms an angle © with the tangential direction and its radial
component must balance the centrigal force. Hence

i sin@ dr ds = prw?® § dr ds

or
T Sind = prwté

0

Using analogy with flat plate, one has
T, C0sO ~ p(wr)7/4 (\)/6)1/4

(U, substituted by rw). Then

§oMB

(v/w)
The torque becomes '

et RS -~ pRuw? (v/w)”5 r3/° g3
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or L

2 3 (v )1/5 e

UR

‘M~pU
where

U gy“{Rt

Von Karman using the 1/7 power law for the variation of
the tangential velocity component through the boundary layer showed  ° }
that, for a disk wetted on both sides, the viscous torque is equal to

wR?

i

2M = 0073 put R ()5 - = e

Thus, Cy becomes

0.146

)173 : o

Ca 8
" (Rey

This result shows good agreement for Rey > 3 «x 105.
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