
NEW MODELS FOR THE MIRRORED TRAVELING TOURNAMENT
PROBLEM

Marco Antonio Moreira de Carvalho
Instituto Tecnológico de Aeronáutica – ITA

Praça Marechal Eduardo Gomes, 50, São José dos Campos – SP, Brasil
mamc@ita.br

Luiz Antonio Nogueira Lorena
Instituto Nacional de Pesquisas Espaciais – INPE

Laboratório Associado de Computação e Matemática Aplicada – LAC
Av. dos Astronautas, 1.758, São José dos Campos – SP, Brasil

lorena@lac.inpe.br

ABSTRACT
The Mirrored Traveling Tournament Problem (mTTP) is a challenging combinatorial

optimization problem which consists in generating a timetable for sports tournaments with two
half series, what is equivalent to a double round-robin timetable problem. The considered
objectives are to minimize the distance traveled by teams during the tournament and the new
objective of minimizing the longest distance traveled, named MinMaxTTP. It is proposed an
integer programming formulation to the mTTP and two models with dynamic constraints to its
solution. Both models are based on the detection of independent sets on conflict graphs, whose
use has not been reported in the literature about the problem. Real data benchmarks from a
baseball tournament are used in the experiments carried out.

KEYWORDS: Traveling Tournament Problem, Sports Scheduling, Integer Programming.

RESUMO
O Mirrored Traveling Tournament Problem (mTTP) é um desafiador problema de

otimização combinatória que consiste em realizar a programação de jogos de torneios esportivos
compostos por dois turnos, equivalente a um problema de escalonamento double round-robin. Os
objetivos considerados neste trabalho são o de minimizar a distância percorrida pelas equipes
durante a realização dos jogos e o novo objetivo de minimizar a maior distância percorrida,
denominado MinMaxTTP. Propõe-se a formulação do mTTP como um problema de programação
inteira e dois modelos que utilizam restrições dinâmicas para sua solução. Os modelos se baseiam
na detecção de conjuntos independentes em grafos de conflitos, cuja utilização ainda não foi
registrada na literatura sobre o problema. Experimentos com benchmarks da literatura, formados
por dados reais de um torneio de beisebol são reportados.

PALAVRAS-CHAVE: Traveling Tournament Problem, Programação de Campeonatos
Esportivos, Programação Inteira.

mailto:mamc@ita.br
mailto:lorena@lac.inpe.br

1. Introduction
Due to its importance, the scheduling of sports tournaments (sports scheduling) has an

area of research of its own within operational research. In such tournaments, teams from different
locations face each other, making necessary trips to perform the matches, which implies in
operational costs and can also affect athletes' performance due to the suffered fatigue. Thus, it is
of interest to the tournaments organization to consider these aspects during the matches
scheduling. In double round-robin tournament type, in which we are concerned, all the teams play
against each other twice in two half series, alternating home rights (i.e. the responsibility for
organizing the match). In this type of tournament, all matches are scheduled in advance, since the
composition of matches does not depend on the result of others. For a review of terminology,
applications, specific constraints and methods of this area, we refer the reader to Rasmussen and
Trick (2008).

The Traveling Tournament Problem (TTP) (Easton, Nemhauser and Trick, 2001)
consists of, given a set of n (an even number) teams and the matrix of distances between the
team’s hometowns, to schedule all matches of a tournament. Among the objectives, it is possible
to minimize the distance traveled by the teams or minimize breaks of patterns of alternating home
rights. In this work we introduce a new objective to TTP: to minimize the longest distance
traveled, which we called MinMaxTTP. This problem is considered an operational research
"discomfort" (Trick, 2009): though this is an easy problem to be stated, on the other hand it is
very hard to solve even for small instances. The tournaments are divided into two half series,
these in turn are divided into rounds. The constraints of TTP are:

1. All teams play against all other at each half series;
2. Each team plays only one match per round;
3. Two matches cannot occur consecutively between the same teams (no repeaters); and
4. No team can have more than three consecutive matches at home (i.e., as the host) or

away (i.e., as the visitor).

In the version addressed in this paper, called Mirrored Traveling Tournament Problem
(mTTP), the second half has the same sequence of matches in the first, however, the field rights
are mirrored (i.e., inverted). Thus, constraint 3 is removed and the following constraint is added
to the problem:

5. A match and its mirror can not occur in the same half series.

Note that it is not strictly necessary that the teams return to their hometown after each
match (except in cases in which constraint 4 applies), resulting in the need to minimize the
distance traveled, an objective considered in this approach. Additionally, it is assumed that each
team is in its hometown before the first round of the first half and after the last round of the
second half. Thus, a solution to the mTTP can be seen as a set of tours to be traveled by teams
during the tournament, beginning and ending at their hometowns.

In this work, the mTTP is formulated as an integer programming problem in which the
concept of conflict graph is used as the basis for the development of two models. To the best of
our knowledge, the use of such concept has not been reported in the literature about the problem.

The remainder of this paper is organized as follows: In the next section, a literature
review is performed. Then the new formulation, conceptualization and integer programming
models for the mTTP are presented. In Section 4, computational experiments are detailed and
results discussed. Finally, conclusions are drawn about the work and references are shown.

2. Literature Review
Although the complexity of TTP has not been defined, one can see that this is a

complex problem. Among the approaches described below, some rely on grid computing and
parallelism. According to the experiments analyzed, it becomes clear that even with the use of
such methods, computing the solution of problems of moderate dimensions still requires days of
execution.

Instances often used as benchmarks in the literature about the problem are real data
from the National League of Professional Baseball Clubs (NL) Super 14 Rugby League (Super),
National Football League (NFL) and the Brazilian Soccer Championship. These instances have 4
to 32 teams, and can be found in http://mat.gsia.cmu.edu/TOURN/. Among the sets cited, the
most discussed among the works below is NL. In the remainder of this paper instances of this set
will be referred to as NLn, where n denotes the number of teams. The largest instance solved up
to date has 10 teams, and to prove optimality it took a week of running time in a grid consisting
of 120 processors (Trick, 2009).

Easton, Nemhauser and Trick (2001), define the TTP and present real data instances for
use as benchmarks. It is also proposed a method of constraint programming and integer
programming. In preliminary experiments reported, instances NL4 and NL6 were solved, the first
in a few seconds and the last in some hours in a computational environment not informed. No
greater instance was solved by this method.

The use of Lagrangean relaxation is proposed by Benoist, Laburthe, and Rottembourg
(2001), in which a subproblem is created for each team: the restricted traveling salesman
problem. The relaxation is used in a collaborative scheme that also involves constraint
programming for bounds strengthening and dynamic programming. In their experiments with the
benchmarks, the approach was able to prove optimality for instances NL4 and NL6, requiring 24
hours of execution for the latter. For the NL10 instance, after 24 hours of running the gap
obtained was 17.7%. The lower bound given by Lagrangean shown to be effective.

Easton, Nemhauser and Trick (2003) again address the TTP, this time through a
parallelized implementation of the branch-and-price method, where the master problem is solved
by column generation and the subproblems are solved by constraint programming. The instance
NL8 was solved in just over four days, using 20 processors, however, the constraint of no
repeaters was not considered. It was proposed the independent lower bound, a lower bound that
considers a traveling salesman problem for each team. Lower bounds for cases with circular
distances (adding aspects of the traveling salesman problem to the TTP) are proposed by
Fujiwara et al. (2003).

A hybrid heuristic of GRASP (Greedy Randomized Adaptive Search Procedure) and
ILS (Iterated Local Search) is presented by Ribeiro and Urrutia (2007). The results showed that
in some cases the mirrored solution found was better than the best known not mirrored solution at
that moment, for circular distance instances. The average gap in relation to the not mirrored
solutions was 17.1%. Another important aspect is the execution time limited to 15 minutes, much
lower than that reported by other methods. Four different parallelization strategies on a
computational grid for this heuristic are proposed by Araújo et al. (2007). Using the strategy of
maintaining a poll of solutions, within hours of execution it was possible to obtain better
solutions than those previously reported for the mTTP for instances with circular distances and
for NL16. A grid with 82 computers distributed in 4 clusters was used.

Urrutia, Ribeiro and Melo (2007), improve the independent lower bound considering
the optimal solutions if the distances were constant between all pairs of cities. Good reduction
rates were obtained for both TTP and mTTP. For instances of the NL set, only for instance NL8
no reduction in the existing bound for the mTTP was achieved. Bounds not available for the NFL
set were also obtained.

Cheung (2008), presents a two stage method, based on 1-factorizations on the complete
graphs representation of the mTTP. With this method, it was possible to solve the NL8 instance,
using a single computer without parallelization after 3.7 days of execution. Although it was

http://mat.gsia.cmu.edu/TOURN/

subsequently published, the integer programming formulation solved by branch-and-price
proposed by Irnich (2009) is considered the first method to solve the instance NL8 to proven
optimality, after 12 hours of execution in a single computer without parallelism. Additionally,
several lower bounds for benchmarks were improved, among them, NL10 and NL12.

The Benders decomposition approach is used to obtain lower bounds for the mTTP in
(Cheung, 2009), which additionally proposes a mixed integer linear programming model. Better
bounds for the instances NL10 to NL16 and NFL16 to NFL24 were found, requiring 3.5 to 22.5
days of execution.

An annotated bibliography on sports scheduling detailing definitions, methodologies
and applications is provided by Kendall et al. (2010). Among the problems addressed is the
mTTP.

3. New Formulation and Models
Two new integer programming models for mTTP are presented. Both are based on

independent sets detection in specific graphs that have characteristics of conflicts between its
variables, however, they have different objectives. Such graphs, named conflict graphs, and the
proposed models are presented below. Additionally, the ways in which distances are calculated in
the models are shown, each serving a specific need.

3.1. Conflict Graphs
In conflict graphs, vertices represent instances that are adjacent to other only if they are

conflicting. In the case of TTP, vertices represent matches, which are adjacent if they cannot be
scheduled for the same round because they have teams in common. Applications of conflict
graphs in other problems include Bin Packing with Conflicting Objects (Muritiba et al., 2009),
Point-Feature Cartographic Label Placement, Manufacturer’s Pallet Loading, Woodpulp Stowage
and Daily Photograph Scheduling of an Earth Observation Satellite (Ribeiro, 2007).

For example, consider four teams: SPO, FLA, CRU and GRE. All crossings totalize 12
ordered pairs (home, away) that define the matches. The conflict graph for this example is shown
in Figure 1.

Figure 1 – Four teams conflict graph.

According to the graph, matches SPO×FLA and GRE×CRU could be scheduled to the
same round, since there is no conflict between these matches. The structure of the conflict graph,
therefore, suggests that independent sets (that in this case have a fixed size: n/2) represent
matches that can be scheduled simultaneously for the same round. The mathematical models
presented in the sections below are based on the detection of independent sets in conflict graphs,

a new approach for the mTTP.

3.2 Problem Data and Variables
Both models use the same data set and share most of the variables. The problem data

are:

 n: number of teams;
 p: number of rounds per half;
 m: number of possible ordered pairs of teams that make up a match;
 gi: distance between the cities of the teams participating in the match i (i = 1, ..., m);
 di,k: distance to be traveled between matches i and k ((i, k)conflict graph); and
 hi,k: distance traveled between the match i and k of different halves (i is a final

round match of the first half and k is a first round match of the second half, (i,
k)conflict graph);

The models variables are:

 xi, j: match i takes place in round j (i = 1, ..., m and j = 1, ..., p);
 yi,k: match k takes place in the next round of the match i ((i, k) conflict graph);
 wi,k: match i takes place on the last round of the first half and match k occurs in the

first round of the second half;
 si: initial trip before match i (i = 1, ..., m);
 ei: final trip after match i (i = 1, ..., m); and
 z: longest distance traveled during the tournament.

As shown, three different calculations of distances are used. Consider the match
scheduling shown in Table 1 for the details below. The half and round of each match are shown,
which are also identified by the value in column “id”. The last two columns present the teams
participating in each match and the city where it will take place.

Table 1 – Example of schedule.

Half Round id Match City
1 SPO × GRE São Paulo

1
2 FLA × CRU Rio de Janeiro
3 SPO × CRU São Paulo

2
4 FLA × GRE Rio de Janeiro
5 CRU × GRE Belo Horizonte

1st

3
6 FLA × SPO Rio de Janeiro
7 GRE × SPO Porto Alegre

4
8 CRU × FLA Belo Horizonte
9 CRU × SPO Belo Horizonte

5
10 GRE × FLA Porto Alegre
11 GRE × CRU Porto Alegre

2nd

6
12 SPO × FLA São Paulo

The first distance calculation, denoted by gi, is the distance between the hometowns of
the two teams participating of match i from the first round of the first half or from last round of
the second half. For example, according to table 1 above, g1 is calculated as the distance between
Porto Alegre and São Paulo, since the GRE team will travel to São Paulo.

Since it is the mirrored version of the problem, the first half determines the second, and
therefore, only the first round variables are handled. However, the distance traveled in the second
half must also be taken into consideration, for the integer programming model to represent the
problem completely. From this need, a second distance table is created in which, for each pair of
matches, the distances between them in the first half and between its mirrors in the second half
are summed.

The calculation, di,k is the distance between matches of two different halves. For
example, d3,6 is the sum of distances between São Paulo and Rio de Janeiro (the travel of SPO
team between matches 3 and 6) and between Belo Horizonte and São Paulo (the travel of SPO
team between matches 9 and 12 – mirrors the previous matches). This calculation only occurs
when two matches in different halves have one team in common. Otherwise, the distance is zero.

The third calculation, hi,k refers to the distance between matches of the end of the first
half and the beginning of the second. For example, h6,7 is the distance between Rio de Janeiro and
Porto Alegre.

3.3 Model 1
The first model aims to minimize the total distance traveled between the scheduled

matches, and is presented below.

Min

graphconflict),(11graphconflict),(ki

ikiki

m

i
ii

m

i
i

ki
ikik whegsgyd (1)

subject to

1)(
1

,1,

p

j
jiji xx i = 1, 3, 5, ..., m-1 (2)

1,, jkji xx (i, k) conflict graph
j = 1, ..., p

(3)

1,1,, kijkji yxx (i, k) conflict graph
j = 1, ..., p-1

(4)

01,11, iii sxx i = 1, 3, 5, ..., m-1 (5)

0,11, ipii exx i = 1, 3, 5, ..., m-1 (6)

1,,1, kjpki wxx
(i, k) conflict graph
j = match i mirror
i = 1, ..., m

(7)

}1,0{, jix i = 1, ..., m
j = 1, ..., p

(8)

}1,0{, kiy (i, k) conflict graph (9)

The first set of constraints (2) provides that if a match is scheduled, its mirror may not
be in the same half either. The independent set detection formulation (3) does not allow
conflicting matches to be scheduled for the same round. Constraints (4)-(7) calculate the
distances: between rounds (4), before the first round (5), after the last round (6) and between
halves (7). Constraints (8) and (9) define that the variables are binary.

This model has m×(4×|E|+p+2) variables and m×[1.5+p×(6n-12)] constraints, where |E|
is the cardinality of the conflict graph edge set.

3.4 Model 2
Unlike the previous model, the second model has a different objective: to minimize the

longest distance traveled, which we named MinMaxTTP. To the best of our knowledge, this
objective is not addressed in the literature about the TTP. The model is presented below.

Min z
(10)

subject to

1)(
1

,1,

p

j
jiji xx i = 1, 3, 5, ..., m-1 (11)

1,, jkji xx (i, k) conflict graph
j = 1, ..., p

(12)

1,1,, kijkji yxx (i, k) conflict graph
j = 1, ..., p-1

(13)

mzydm kiki ,,)((i, k) conflict graph (14)

01,11, iii sxx i = 1, 3, 5, ..., m-1 (15)

mzsgm ii)(i = 1, 3, 5, ..., m-1 (16)

0,1, ipipi exx i = 1, 3, 5, ..., m-1 (17)

mzegm ii)(i = 1, 3, 5, ..., m-1 (18)

1,,1, kjpki wxx
(i, k) conflict graph
j = match i mirror
i = 1, ..., m

(19)

mzwhm kiki ,,)((i, k) conflict graph (20)

}1,0{, jix i = 1, ..., m
j = 1, ..., p

(21)

}1,0{, kiy (i, k) conflict graph (22)

0z (23)

As in the previous model, constraints (11) and (12) are related to conflicts between
matches, and the constraints (13), (15), (17) and (19) calculate the traveled distances. Constraints
(14), (16), (18) and (20) determine the longest distance traveled. Constraints (21) and (22) define
that the variables are binary and the constraint (23) defines the variable is positive.

This model has m×(4×|E|+p+2)+1 variables and m×[3.5+4×|E|+(n-2)×(6p)]+1
constraints, where again, |E| is the conflict graph edge set cardinality.

3.5 Consecutive Home-Away Matches Dynamic
Constraints

In the presented models, the constraint of consecutive home or away matches for each
team was not directly considered. This constraint is applied dynamically to the model iteratively
until we obtain a feasible solution to the problem.

At each loop, the model solution is analyzed and, if some team has more than three
consecutive home or away matches, the variables related to such matches are embedded in a
constraint as shown below:

33,2,1,, jfjcjbja xxxx
j = 1, ..., p-3
a, b, c, f = matches that violate the
constraint

(24)

Once the constraint is added, the model is solved again and the process repeats
iteratively until the solution meets all constraints. This method of applying the constraint prevents
the integer programming model from becoming too large, adding only the necessary constraints.

As only variables related to the first half are manipulated (since the second half is
mirrored), there still may be a violation of this constraint involving the two halves at the same
time. For example, a team has two matches away in the final two rounds of the first half and
again two matches away in the first two rounds of the second. It is also necessary to verify such
special cases, what is done simulating the mirrors of the first rounds and confronting them with
the latest rounds of the first half.

4. Computational Experiments
Experiments were carried out involving some of the instances available in the literature

described earlier in Section 2. The computing environment used consists of an Intel Pentium 4
3.20 GHz frequency and 1016 MB of RAM memory under Windows XP Professional Edition
operational system. The models were solved using CPLEX 12.

In the first part of the experiment the models were solved directly, and then strategies
for accelerating the solution were included. A limit of 48 hours for the execution time was
established. This limit is smaller than those seen in other works that address the TTP by exact
methods, however, the results reported here are preliminary. Table 2 presents the data obtained
by direct solution of the original models by CPLEX. For each model, the results, running times
and number of loops required to solve the instances are presented. The last column of the table
shows the best results known for each instance.

Table 2 - Original models results.

Model 1 Model 2
Instance

Result Runtime (s) # Loops Result Runtime (s) # Loops
Benchmark

NL4 8276 0.36 01 8429 0.48 01 82762

NL6 * * * * * * 26588
NL8 * * * * * * 41928
NL10 * * * * * * 63832

1 Not applied. 2 Optimal Solution. * Solution not found within time limit.

The direct solution of the models proves to be impossible within the time limit set,
since in this condition only the smallest instance could be solved. In both models, such instance,
NL4, was solved in less than a minute, while for the instance with two more teams, NL6, the the
48 hours of execution was exceeded. The fast growth of execution times shows the great
difficulty in solving the problem.

In order to accelerate the solve-and-constrain loops, two strategies are proposed. The first
aims to interrupt the CPLEX execution after obtaining the first feasible solution, instead of
waiting for the complete solution. Table 3 presents the results obtained by applying this strategy.

Table 3 - Results interrupting the execution of CPLEX on the first feasible solution found.

Model 1 Model 2
Instance

Result Runtime (s) # Loops Result Runtime (s) # Loops
Benchmark

NL4 8413 0.08 01 8413 0.03 01 82762

NL6 30555 0.63 4 30555 0.92 4 26588
NL8 56599 55.16 29 56599 34.09 29 41928
NL10 88556 145.76 208 91219 3458.25 685 63832

1 Not applied. 2 Optimal Solution.

For the first three instances, the results were similar for the two models, which also
required the same number of iterations and generated exactly the same schedule. This fact in
models of different objectives indicates that there is a difficulty in moving among different
solutions, also evidenced by the fact that a change in one match makes the whole schedule
infeasible. For the last instance, model 1 obtained a better solution in less time and fewer
iterations. The deterioration of the solutions when compared to the previous approach solutions
was expected, since CPLEX was interrupted, however, this deterioration may have been
outstanding, given the distance of over 38% when compared to the benchmarks.

The second acceleration strategy controls the interruption of the model solution
according to the gap between the current solution and the bound used by CPLEX. Therefore, it is
possible to control the solution deterioration level and run time growth. Table 4 presents the
results for different gap values.

Table 4 – Results interrupting the CPLEX execution accordingly to the gap.

gap: 95%
Model 1 Model 2

Instance
Result Runtime (s) # Loops Result Runtime (s) # Loops

Benchmark

NL4 8569 0.05 01 8413 0.03 01 82762

NL6 31068 3.59 8 30555 0.95 4 26588
NL8 55955 635.08 69 56599 34.08 29 41928
NL10 88556 122.86 208 91219 3418.22 685 63832

gap: 90%
Model 1 Model 2

Instance
Result Runtime (s) # Loops Result Runtime (s) # Loops

Benchmark

NL4 8569 0.03 01 8413 0.03 01 82762

NL6 28514 5.23 8 30555 2.27 4 26588
NL8 * * * 56599 463.36 29 41928
NL10 * * * 91219 123057.31 685 63832

gap: 50%
Model 1 Model 2

Instance
Result Runtime (s) # Loops Result Runtime (s) # Loops

Benchmark

NL4 8276 1.00 01 8596 0.47 01 82762

1 Not applied. 2 Optimal Solution. * Solution not found within time limit.

Even for a small variation of gap values (from 95% to 90%), the execution time grows
very fast. For a gap set at 95%, model 1 has the worst solutions, execution times and larger
number of iterations compared to the previous strategy, except for instance NL10, for which there
was only a small change of the runtime. For a gap of 90% the model achieved improved solutions
for NL6 instance, with little variation in execution time, but was not able to solve larger instances
within the time limit.

Model 2 indicates again a great difficulty in moving among solutions, obtaining a single
solution both when the gap is set at 95% or 90%, with a very high difference in execution times.

Lowering the gap to 50% it is possible to solve only the smallest instance in both

models, reaching its optimum value in a second for model 1 and a worse value for the model 2.
However, the objective of the latter model is to minimize the longest distance traveled, the
introduced MinMaxTTP, which in fact occurs for this instance, but affects the total distance
traveled.

The comparison of the number of dynamic constraints added to each model is
performed in Table 5. For each model, the values are presented according to the CPLEX
interruption strategy. The NL4 instance does not appear in the table, since it has 4 teams and no
possible solution can violate the constraint of three home or away consecutive matches.

Table 5 – Number of dynamic constraints added to the models per instance

Model 1 Model 2
Instance Feasibility Gap 95% Gap 90% Feasibility Gap 95% Gap 90%

NL6 16 35 39 16 16 16
NL8 151 475 * 151 151 151
NL10 1658 1658 * 5190 5190 5190

* Solution not found within time limit.

Model 1 adds a different number of dynamic constraints in accordance with the strategy
used (except for instance NL10). This number increases as the gap is reduced, indicating that
different solutions are visited, requiring greater effort to obtain better solutions. Conversely,
model 2 remains constant the number of constraints added, suggesting that the same solutions are
generated, regardless of the strategy used.

Comparing the two models, one can see that there is an alternation in obtaining the best
results and execution times according to the context used, so that we cannot determine the
dominance of one over the other.

According to the data presented, the great conflict between solution quality and run
times is made evident, with little difference between the different criteria established for speeding
up execution, in addition to moving between solutions prove to be reduced.

5. Concluding Remarks
The Traveling Tournament Problem (TTP) has practical application in the preparation

of sports tournaments timetables in their various modalities, an investigation area of its own in
the field of operational research. In relation to the classical problems of the field, the TTP was
defined recently, and attracts attention for being a difficult problem to solve, although it can be
easily stated. The objectives vary from minimizing the distance traveled by the teams during the
tournament and minimizing breaks on travel patterns and matches as host. The variation
addressed in this paper focuses on cases where the tournaments are divided into two similar half
series, where the same matches occur, but inverted in relation to the host team. This variant is
called the Mirrored Traveling Tournament Problem (mTTP). The objectives considered are to
minimize the distance traveled by the teams and a new objective proposed: to minimize the
longest distance traveled.

An integer programming formulation for mTTP based on the detection of independent
sets in conflict graphs where the vertices represent the possible matches between teams and
adjacencies indicate that two matches cannot be scheduled for the same round was presented. To
the best of our knowledge, this concept had not been reported in works related to the Traveling
Tournament Problem.

Two models were proposed, which share the same conceptual basis, however, they have
different objectives: the first seeks to minimize the sum of the distances traveled, and the second
seeks to minimize the longest distance traveled, which we called MinMaxTTP. The latter, not
found in other studies. Both models use dynamic constraints to control the excess of consecutive
home or away matches, a constraint of the problem. Thus, the solution was performed iteratively:

the problem is solved, dynamically constrained and solved again until we obtain a final feasible
solution.

In preliminary computational experiments involving benchmarks of the literature, the
original models were solved directly by the solver used, and later, strategies to accelerate the
iteractive process were included. The first strategy was to interrupt the solver after obtaining a
feasible solution to the model used, and the second was to stop the solver according to the gap
between the current solution and the expected solution. The data collected during the experiments
indicate the difficulty of addressing the problem, ocurring little difference in results obtained by
different solution strategies. The execution time grows very quickly while the sizes of the
instances or the quality of the solutions grow slowly.

Future work involves the inclusion of cuts in the proposed models to accelerate the
solution and experiments with time limit of execution similar to those found in the literature, as
well as implementation of metaheuristics for supplementary results. Bounds based on a
Lagrangian relaxation-type with decomposition into clusters will also be subject of future
research. Finally, the fact that the objective of minimizing the longest distance traveled (here
called MinMaxTTP) is not addressed in the literature can also be explored.

6. Acknowledgements
This work was funded by the State of São Paulo Research Foundation – FAPESP,

process 2009/51831-9 (first author), and partially funded by the National Counsel of
Technological and Scientific Development – CNPq, processes 471837/2008-3 and 300692 /
2009-9 (second author).

References
Araújo, A., Boeres, M. C., Rebello, V. E., Ribeiro, C. C. (2007). Exploring grid
implementations of parallel cooperative metaheuristics: a case study for the mirrored traveling
tournament problem. In: Doerner K., Gendreau M., Greistorfer P., Gutjahr W., Hartl R., editors.
Metaheuristics: progress in complex systems optimization. Berlin: Springer; 297–322.
Benoist, T., Laburthe, F., Rottembourg, B. (2001). Lagrange relaxation and constraint
programming collaborative schemes for travelling tournament problems. In: Proceedings of the
third international workshop on integration of AI and OR techniques in constraint programming
for combinatorial optimization problems, 15–26.
Cheung, K. K. H. (2008). Solving mirrored traveling tournament problem benchmark instances
with eight teams. Discrete Optimization, 5:138–43.
Cheung, K. K. H. (2009). A Benders approach for computing lower bounds for the mirrored
traveling tournament problem. Discrete Optimization, 6:189–196.
Easton, K., Nemhauser, G. L., Trick, M. A. (2001). The travelling tournament problem:
description and benchmarks. In: Walsh, T., editor. Principles and practice of constraint
programming. Lecture notes in computer science, vol. 2239. Berlin: Springer, 580–5.
Easton, K., Nemhauser, G. L., Trick, M. A. (2003). Solving the travelling tournament problem:
a combined integer programming and constraint programming approach. In: Burke, E., de
Causmaecker, P., editors. The 4th international conference on the practice and theory of
automated timetabling. Lecture notes in computer science, vol. 2740. Berlin: Springer, 100–9.
Fujiwara, N., Imahori, S., Matsui, T., Miyashiro, R. (2007). Constructive algorithms for the
constant distance traveling tournament problem. In: Burke, E. K., Rudová, H., editors. Practice
and theory of automated timetabling VI. Lecture notes in computer science, vol. 3867. Berlin:
Springer, 135–46.
Irnich, S. A new branch-and-price algorithm for the traveling tournament problem. Technical
Report, OR-01-2009, RWTH Aachen; 2009.

Kendall, G., Knust, S., Ribeiro, C. C., Urutia, S. (2010). Scheduling in sports: An annotated
bibliography, Computers and Operations Research, 37, 1-19.
Muritiba, A. E. F., Iori, M., Malaguti, E., Toth, P. (2009). Algorithms for the bin packing
problem with conflicts. INFORMS Journal on Computing, Articles in Advance, 1-15.
Rasmussen, R. V., Trick, M. A. (2008). Round robin scheduling – a survey. European Journal
of Operational Research, 188, 617-636.
Ribeiro, C. C., Urrutia, S. (2007). Heuristics for the mirrored traveling tournament problem.
European Journal of Operational Research, (179):775–87.
Ribeiro, G. M. (2007). Relaxação Lagrangeana com divisão em clusters para alguns problemas
de otimização modelados em grafos de conflitos. Tese (Doutorado) – Instituto Nacional de
Pesquisas Espaciais. São José dos Campos.
Trick, M. (2009). Michael Trick’s Operations Research Blog. Operations Research:
Embarrassments and the Traveling Tournament Problem. 2009. Disponível em:
http://mat.tepper.cmu.edu/blog/?p=1020. Acesso em 13 de Abril de 2010.
Urrutia, S., Ribeiro, C. C., Melo, R. A. (2007). A new lower bound to the traveling tournament
problem. In: Proceedings of the IEEE symposium on computational intelligence in scheduling,
Honolulu. IEEE, 15–8.

http://mat.tepper.cmu.edu/blog/

