Algebra de Regiões João Pedro

Objetivo geral

- Discutira possibilidade de uma linguagem espacial genérica o suficiente para incorporar modelos de diferentes disciplinas de SIG
- Padronizada o suficiente para que possa ser entendida por diferentes comunidades de usuários.
- Formal o suficiente para refletir as propriedades e relações entre elementos representados.
- Alguns aspectos dessa abordagem foram implementados como extensão da linguagem LEGAL, disponível como um módulo do SIG Spring.

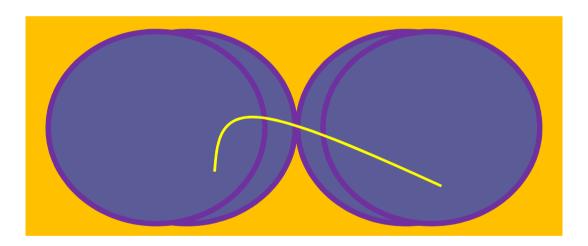
Sequencia

- Modelos Topológicos de Espaço
 - □ Topologia dos conjuntos de pontos
 - Topologia digital
 - □ Topologia das regiões conexas.
- Regiões.

(podem ser identificadas e/ou descritas, definindo assim elementos para estruturas algébricas.)

Álgebra de Regiões

(regiões como zonas e vizinhanças)


- Exemplos e Aplicações.
- Perspectivas Futuras.

Modelo Topológico de Espaço

- Entidades de interesse geográfico em uma paisagem serão referidas por feições.
- À medida que sejam identificadas, as feições se transformam em **objetos** e **campos** geográficos
- A partir daí, atributos de diferentes naturezas podem ser associados ou avaliados.
- Mas como viabilizar a identificação de feições segundo diferentes modêlos topológicos de espaço?.

Modelo Topológico de Espaço

Uma propriedade topológica da representação de feições é a conexidade (ou conectividade), que traduz a não-separabilidade de alguns conjuntos.

 Equivalentemente, uma relação de conectividade (ou conexidade) existe quando qualquer dois pontos podem ser ligados por caminhos conexos.

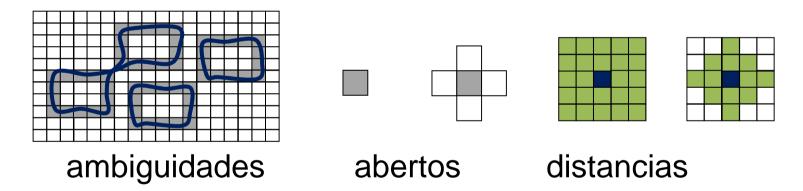
Topologia dos conjuntos de pontos

 O conceito de conexidade introduz a noção de dimensionalidade. Pode-se identificar um espaço topológico a algum sub-espaço de outro:

retas a linhas em um plano; planos a superfícies no espaço, etc...

Se existir uma noção de distância entre elementos (pontos), pode-se falar em interior, exterior e bordas de feições.

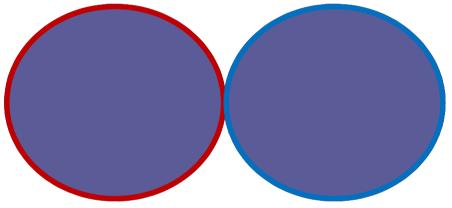
Topologia dos conjuntos de pontos


 Conjuntos conexos podem ou não, ser fechados.

Num SIG vetorial costuma-se fechar cada conjunto conexo antes de identificá-lo.

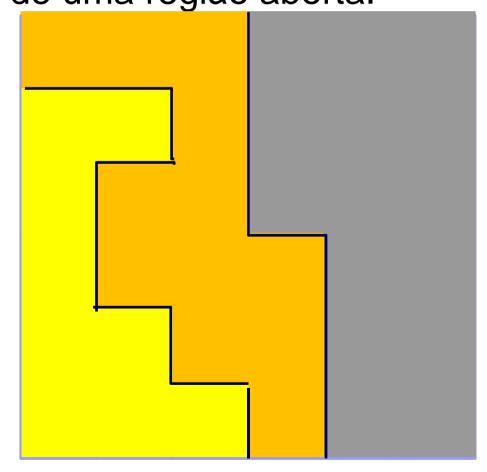
Nesse contexto, o conceito de "**região**" é usado para referir-se a esses "fechos" (identificáveis) de conjuntos de pontos.

Topologia Digital

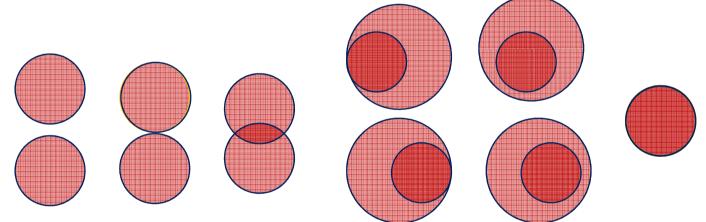

Num SIG matricial (raster), a conexidade, tanto como propriedade, quanto como relação não é tão evidente.

Nesse contexto, o conceito de "**região**" é usado para referir-se a conjuntos 4-conexos, 8-conexos de locais (ou pixels).

Topologia das regiões conexas


Pode-se relaxar a noção de conexidade para uma em que apenas os **fechos** de conjuntos se interceptem.

Nesse contexto, o conceito de "**região**" é usado para referir-se a qualquer conjunto conexo.


Topologia das regiões conexas

Também o conceito de local (ou pixel) pode ser tratado como o de uma região aberta.

Relações Topológicas

Com base na intercessão entre bordas, interiores e exteriores de regiões é possível estabelecer relações topológicas entre feições.

disconexo, conectado, sobrepõe, tangencial interno ...

As mesmas relações podem ser extraídas em uma topologia focada no conceito de região..

Modelo Funcional de um SIG

- Um outro aspecto importante é como um SIG organiza e flexibiliza o uso de sua funcionalidade.
- O conceito mais central aqui é o de mapa como função de um conjunto de locais L, para um conjunto de valores, V

$$m \in V^L$$

As estruturas existentes no contradomínio V podem ser úteis para induzir operações e relações sobre mapas e regiões.

A interação (#) entre mapas pode então ser definida, para cada local l ∈ L, como um produto de funções:

$$(g \# f)(l) = h(l)$$
, com $g \in V^{L}$, $f \in W^{L} e h \in X^{L}$.

A afinidade entre os domínios envolvidos irá facilitar a atribuição de significado a tais interações.

■ Se V for de natureza Booleana,

$$(g \# f)(l) = f(l),$$
 se $g(l) = 1,$
= nulo, se $g(l) = 0.$

A função *g* determina um conjunto de **regiões** na "paisagem" **L**, cujos valores locais devem ser avaliados por **f**

■ Se *V* for de natureza **quantitativa**, a interação:

$$(g \# f)(l) = g(l) \# f(l),$$

pode indicar a estensão de operações aritméticas.

- Na prática, qualquer operação é precedida (implicitamente) de uma operação primitiva de natureza Booleana que indica a presença de 'nulos' entre seus argumentos.
- Esse fato pode ser usado (explicitamente) para definir a interação ("default") entre mapas de tipos incompatíveis:

$$(g \# f)(l) = 0$$
, se $g(l) = nulo$ ou $f(l) = nulo$.
1, caso contrário.

Mapas de mapas

Um mapa m pode ainda associar cada local de uma "área de estudo", L a uma função (mapa) em V^L.

$$m \in (V^L)^L$$

Na maioria das aplicações práticas, cada local de *L* é associado a alguma função (outros mapas) restrita a alguma região.

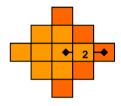
Mapas de mapas

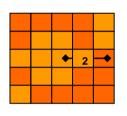
- A interação entre mapas assim generalizados, resulta na seleção de conjuntos de locais (regiões) e valores associados a eles (restrições).
- Sobre esses conjuntos várias formas de sumarização podem ser aplicadas para caracterizar locais.

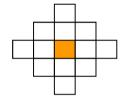
Mapas de mapas

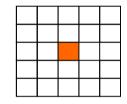
Uma maneira de viabilizar a implementação do conceito de mapa como função, é restringindo-o a uma família tratável de funções.

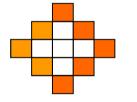
- As operações aritméticas (e funções matemáticas) permitem implementar uma vasta classe de funções de natureza quantitativa
- As relações de ordem e igualdade, permitem implementar uma vasta classe de funções de natureza Booleana.

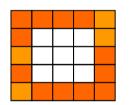

Regiões e Relações


- Segue-se que muitas regiões podem ser especificadas por meio de relações e operações Booleanas.
 - vegetation == "forest" AND slope > 30
 - vegetation == "forest" AND district == "st_michel"
 - district.All
 - Distance() < 3 AND vegetation == "forest"</p>
 - Distance(rios=="principais") < 30

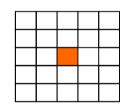

Aplicadas localmente, algumas combinações acrescentam **variabilidade** à família de regiões especificada


Medidas de distancia


Quarteirao Tabuleiro







Majority (mapa * (Distancia() < 3))

Majority (mapa * (1 < Distancia() < 3))

Regiões e vizinhanças

 Locais vizinhos podem ser envolvidos explicitamente em operações

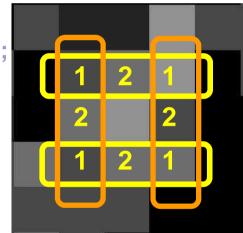
Uma lista de coordenadas relativas indica a seleção de locais, isso sugere um modo de especificar as regiões envolvidas acima.

```
neigh = (-1,-1),T), (-1, 0),T), (-1, 1),T),
(0,-1),T), (0, 0),T), (0, 1),T),
(1,-1),T), (1, 0),T), (1, 1), T);
```

Regiões e vizinhanças

 Relações e expressões Booleanas podem atribuir variabilidade ao substituir os valores binários associados aos locais de cada vizinhança:

```
(-1,-1,slope < 30), (-1,0, slope < 20), (-1,1, slope < 10), (0,-1, slope < 20), (0,0, slope < 20), (0,1, slope < 10), (1,-1, slope < 10), (1,0, slope < 10), (1,1, slope < 10)
```


Novas regiões podem ser especificadas a partir de outras previamente definidas:

neigh AND slope < 30

Vizinhanças Ponderadas

 Considere o cálculo do gradiente a partir de valores associados a locais vizinhos de cada "pixel" de uma imagem

Uma forma de especificar essas regiões é:

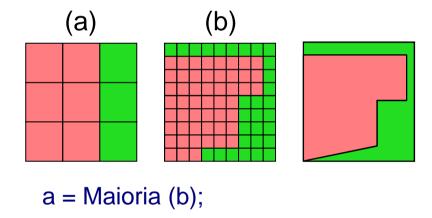
Funções de Sumarização

 Uma nova expressão para o gradiente pode então ser obtida, com base na interação entre essas regiões seguida de uma sumarização estatística (soma)

```
Var = Sqrt ( (Sum ( img # down) - Sum ( img # up ) )^2 + (Sum ( img # right ) - Sum ( img # left ) )^2 );
```

Por fim pode-se associar a expressão resultante a uma variável

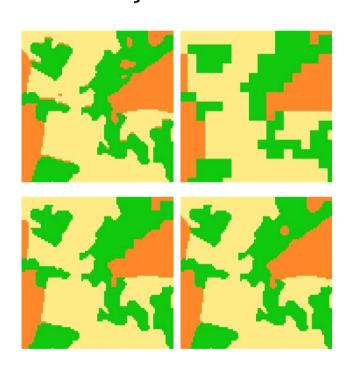
Estatísitcas básicas como **média**, **mediana**, **maioria**, aplicadas a conjuntos de valores selecionados, permitem a modelagem de uma vasta classe de operações não-locais.


Exemplo: Automatos celulares

 Com a ajuda do comando iterativo 'Enquanto', o jogo "vida" pode ser implementado pelo seguinte programa

```
{
Numerico m, m0 ("Matrizes");
m0 = Recupere (Nome="EstadosIniciais");
m = Novo (Nome="Evolução", ResX=1, ResY=1);
Regiões R;
R = [-1,-1], [-1, 0], [-1, 1], [0,-1], [0, 1], [1,-1], [1, 0], [1, 1];
t = 0; m = m0; //estado inicial de uma matriz de locais
Enquanto (t < 12) {
    m = ((m == 1) E (2 <= Soma (m * R) <= 3))
        OU ((m == 0) E (Soma (m * R) == 3)) ? 1 : 0;
t = t + 1;
};
}</pre>
```

Locais a Diferentes Resoluções


 O conceito de local, embora por um lado modele a noção de menor unidade representável, por outro também pode ser visto como a agregação de locais representados a resoluções mais finas

 Expressar a compatibilidade entre dados a diferentes resoluções também implica em um processo de sumarização

Exemplo: eliminação de ruídos temáticos

 Eliminação de ruídos de um mapa temático com base em critério envolvendo diferentes resoluções e operações de vixinhança.


```
{
Tematico inicial, final, maior ("CoberturaVegetal");
inicial = Recupere(Nome = "original");
maior = Novo(Nome = "Maioria", ResX=300,
ResY=300);
final = Novo(Nome "Result", ResX=30, ResY=30);

maior = Maioria(inicial);
final = inicial != "pinus" ? inicial : maior != "pinus"
? maior : inicial;
final = inicial;
n = 0;
While (n <= 2) {
final = final == "pinus" && Minoria(final #
Distance()<=1) == "pinus" ?
Maioria(final # Distance()<=1) : nulo;
n = n+1; };
}</pre>
```

Aplicações: Ecologia da Paisagem

- A movimentação de indivíduos de uma espécia (p. ex: passaros) depende da interação de diversos fatores baseados no indivíduo e/ou na paisagem.
- A habilidade de dispersão é influenciada pelo posicionamento com relação a bordas e interiores de trechos de floresta, proximidade de agua etc.
- Outros fatores individuais como faixa etária, fase reprodutiva; também fatores climáticos, como estação do ano etc.

Aplicações: Ecologia da Paisagem

 Alguns aspectos da modelagem dessa interação entre indivíduos e paisagem pode ser obtida da interação entre a dispersão de cada individuo e mapas.

 Atributos indivíduais podem ser explorados representando-se indivíduos por objetos pontuais, com atributos mantidos por tabelas de um BD.

Linguagens e Automatos

- Toda a flexibilidade da estrutura apresentada, se deve à estratégia de implementação usada, fundamentada na teoria das linguagens formais e automata;
- O entendimento de expressões da linguagem é implementado por automatos de pilha, controlados por um pseudo-código, de um modo que se aproxima de uma solução compilada.
- A afinidade com técnicas de modelagem de aspectos dinâmicos de processos físicos e ambientais como automatos celulares decorre naturalmente.

Conclusões e Trabalhos Futuros

- Como linguagens e automatos são tópicos tão intimamente relacionados, é também sugestivo explorar modelos baseados em automatos celulares por suas contrapartes descritivas.
- Expressar mapas através da interação entre regiões e outros mapas tanbém evita a necessidade de representa-los fisicamente.
- Além disso, essencialmente apenas operações locais estão ativas a cada instante, o que sugere sua adequação para uso em arquiteturas paralelas.

- Existem mesmo muitos trabalhos futuros a serem apontados, entre eles destacam-se explorar as semelhanças formais entre o conceito de relação que fundamenta o SQL e o conceito de região, visando a integração com SGBD.
- Explorar técnicas mais sofisticadas de percorrimento de conjuntos adequados de locais, também é fundamental para explorar sua vocação para modelagem em SIG..

Obrigado!

jpedro@dpi.inpe.br

Referências

- Clarke, B.L., 1981. A Calculus of Individuals Based on 'Connection'. Notre Dame Journal of Formal Logic 22 (July 1981): 204-18.
- Cohn A.G., Renz, J., 2008, Qualitative Spatial Representation and Reasoning, in: F. van Hermelen, V. Lifschitz, B. Porter, eds., Handbook of Knowledge Representation, Elsevier, 551-596, 2008.
- Cordeiro J.P., Camara G., Freitas U.M., Almeida F.A. 2009, Yet Another Map Algebra, GeoInformatica, 13, 183-202.
- Couclelis, H. 1992, People manipulate object (but cultivate fields). Beyond the raster-vector debate in GIS. In: Proceedings of the international conference on Theories and Methods of Spatio-Temporal Reasoning in Geographic Space. Pisa, Italy
- Egenhofer, M., 1991. Point-set topological spatial relations, International Journal of Geographic Information Systems 5 (2) 161-174.
- Egenhofer, M., 1994. Spatial SQL: A Query and Presentation Language, IEEE Transactions on Knowledge and Data Engineering 6 (1) 86-95.
- FALL, A.; FALL, J. A Domain-specific language for models of landscape, dynamics. **Ecological Modelling**, v. 137, p. 1–21, 2001.
- Goodchild, M. 1992a, Geographical Information Science, International Journal of Geographical Information Systems, 6, 31-45.

Referências

- GOTTS, N.M; GOODAY, J.M.; COHN, A.G. A Connection based approach to common-sense topological description and reasoning. **Monist**, v. 79, n.1, p.51–75, 1996.
- Grimm, V., Wyszomirski, T., Aikman, D., Uchmanski, J. 1999. Individual-based modelling and ecological theory: synthesis of a workshop. Ecological Modelling. 115, 275–282.
- Herring, J.R. 2006. OpenGIS Implementation Specification for Geographic information – Simple feature access - Part 2: SQL
- Kernighan, B., Ritchie, D. 1988, The C Programming Language, Prentice Hall, Englewood Cliffs, NJ.
- Lima, E.L. 1970, Elementos de Topologia Geral, Ao Livro Técnico, Rio de Janeiro.
- OGC, 1996. The OpenGIS Abstract Specification: an Object Model for Interoperable Geoprocessing. Open GIS Consortium: Revision 1. OpenGIS Project Document 96-001.
- Takeyama, M. 1997, Building spatial models within GIS through geoalgebra.
 Transactions in GIS, 2, 245–256.

.

Referências

- Takeyama, M., Couclelis, H. 1997, Map dynamics: integrating cellular autômatos and GIS through Geoalgebra, International Journal of Geographical Information Science, 11, 73-91
- Tomlin, C.D. 1990, Geographic Information Systems and Cartographic Modeling.
 Prentice Hall, Englewood Cliffs, NJ.
- Wagner, H.H., Fortin, M.J. 2005, Spatial Analysis of Landscape: concepts and statistics. Ecology, 86-8, 1975-1987.
- White, R., Engelen, G. 1993. Cellular autômatos and fractal urban form: a cellular modeling approach to the evolution of urban land-use patterns. Environment and Planning A. 25:1175-1199.
- White, R., Engelen, G. 1994, Cellular dynamics and GIS: modeling spatial complexity", Geographical Systems, 1, 237-253