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ABSTRACT
In this paper a new multi-objective implementation of the
generalized extremal optimization (GEO) algorithm, named
M-GEOvsl, is presented. It was developed primarily to be
used as a test case generator to find transition paths from
extended finite state machines (EFSM), taking into account
not only the transition to be covered but also the minimiza-
tion of the test length. M-GEOvsl has the capability to
deal with strings whose number of elements vary dynami-
cally, making it possible to generate solutions with different
lengths. The steps of the algorithm are described for a gen-
eral multi-objective problem in which the solution length is
an element to be optimized. Experiments were performed
to generate test case from EFSM benchmark models using
M-GEOvsl and the approach was compared with a related
work.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Experimentation, Verification

Keywords
Multi-objective evolutionary algorithm, model-based test-
ing, variable length test case

1. INTRODUCTION
Although most of search-based software engineering works

is concerned with testing [11], few approaches have been pro-
posed for model-based testing (MBT). The test cases are de-
rived from the system behavior models in MBT. Models can
help to understand the system, can adapt well to changes
in the system and also can be independent of programming
languages and platforms. Testing from state models, as ex-
tended finite state machine (EFSM), generally consists in
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generating transition path (i.e. test case) based on a cov-
erage criterion (e.g. all transitions) and also in generating
adequate data for the parameters to take the path. Since
determining the test data is an undecidable problem, search-
based software testing (SBST) can be a promising direction
to systematically generate test cases from EFSM. In contrast
to code-based testing in SBST, a crucial difference in MBT
regards the number of design variables, i.e., elements to be
optimized. The code-based testing searches for the input
values of the program under test to cover the test criterion,
then the number of design variables is known. In MBT, a
test case consists of a sequence of inputs, corresponding to a
transition path in the model, and its length is also of concern
to test case generation. In the MBT approaches based on
search-based techniques, the test case length is established
a priori and does not change during the evolution process.
Kalaji et al. [13, 12] used a genetic algorithm to generate
paths from EFSM with fixed length and, after the search,
data were obtained to sensitize the paths. McMinn and Hol-
combe [18] proposed a SBST approach for the generation of
sequence of function calls with their parameters using chain-
ing approach to represent the sequence but also predefined
the sequence length. Lefticaru and Ipate [15] applied search
techniques to find the parameters values of a function calls
sequence represented as a path in a state machine. As they
chose the path to be covered, the sequence length and the
number of parameters were known.

Determining the sequence length automatically motivated
us to develop the evolutionary algorithm called M-GEOvsl

(Multi-Objective Generalized Extremal Optimization with
variable string length) that could optimize the sequence
length according to the fitness criterion. The algorithm is
derived from a multi-objective version of GEO (Generalized
Extremal Optimization) [7], introducing the capability to
generate solutions with different lengths during the evolu-
tion process. As a multi-objective approach, M-GEOvsl is
aimed at solving problems when the solutions need to meet
several conflicting objectives simultaneously. In the context
of SBST, GEO methods have been successfully used to au-
tomatically generate test cases [1, 21, 22, 5]. M-GEOvsl was
briefly described in previous works [21, 22] addressing only
to test case generation. In this paper, we present the generic
steps for the implementation of the algorithm to be applied
in a multi-objective problem where the solution length is
itself an element to be optimized.

Using M-GEOvsl, we propose an approach that treats the
test case generation from EFSM as a multi-objective opti-
mization problem, which simultaneously finds the path that
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contains a required transition and also minimizes the test
sequence length. The paths as well as all the data involved
in the path are generated during evolution process, includ-
ing the parameter values. An open problem of testing from
EFSM is the infeasible path generation, since conflicts can
exist in guard conditions along a path. This problem is
avoided, at least at the model level, by obtaining the path
dynamically instead of analyzing only the structure of the
model as usual. The approach has been evaluated for vari-
ous benchmark models, as well as for real world applications,
which shows its feasibility. In this paper, the experimental
results for some benchmark models are presented. More-
over, the solutions generated in our approach is compared
to the results of a related work [13]. In relation to multi-
objective optimization for software testing, the approaches
focus on different purposes: branch coverage and dynamic
memory consumption of programs [14], coverage, cost and
fault history for regression testing [23].

The paper is organized as follows. Section 2 presents
M-GEOvsl. Section 3 describes the test case generation ap-
proach from EFSM using M-GEOvsl and shows the results
of the experiments. Section 4 concludes.

2. M-GEOV SL

This section describes the main aspects of M-GEOvsl.

2.1 Solution representation
M-GEO (Multi-Objective Generalized Extremal Optimiza-

tion) [10] is a multi-objective implementation of GEO [7]
based on the Pareto optimality. GEO algorithm is a global
search meta-heuristic that generalizes the extremal optimiza-
tion (EO) method [4] inspired by a model of natural evolu-
tion. GEO is specially devised to be used in constrained
or unconstrained problems, non-convex or even disjoint de-
sign spaces, with any combination of continuous, discrete or
integer variables [8, 9].

In GEO methods, the population consists of a string of
species and for each of them is associated a fitness value. A
first difference between M-GEO and M-GEOvsl is the pop-
ulation encoding. Each design variable in M-GEO is rep-
resented by bits and each bit is considered a species. In
M-GEOvsl a discrete encoding is used, in which each de-
sign variable is treated as a species. For instance, in Fig-
ure 1, the population with 6 design variables has 6 species
in M-GEOvsl, while in M-GEO has 18 species, if each de-
sign variable is encoded with 3 bits. The main differential
of M-GEOvsl is its capability to cope with different popula-
tion lengths during the evolution process. For this purpose,
the population consists of two parts (sub-strings): one with
variable size and another with fixed size . In the variable
part, the first species determines the length of the variable
sub-string in a given moment of the evolution process. The
fixed size part of the string can be optional and takes into
account design variables of the problem that do not need a
dynamic size representation.

The evolution process of M-GEOvsl (Section 2.3) is similar
to M-GEO, however the particularities of each algorithm in-
fluence the steps of the process in relation to the population
encoding and mutation operator (Section 2.2).

2.2 Mutation operator
Each species is mutated according to its domain. A special

case is the mutation of the first species of the population’s

Figure 1: M-GEO × M-GEOvsl: population

variable part. Two situations should be considered when this
species is mutated: the new value increases or decreases the
current one. In the first case, new species are appended to
the end of the sub-string with random values. In the second
case, the last extra species are ignored. In this way, the
algorithm can generate populations with different lengths.
Figure 2 shows mutations in both parts of the population:
a) mutation at the variable part: the first species of the
variable part is mutated from the value 3 to 4, then one
species is added into the string, and from the value 3 to 2,
the fourth species is ignored; b) mutation at the fixed part:
a species of the second part is mutated to other value in its
domain.

Figure 2: M-GEOvsl: mutations

2.3 Evolution process
The evolution process of M-GEOvsl is illustrated in Fig-

ure 3. In each iteration of M-GEOvsl, one objective function
is randomly chosen with uniform distribution to be used as
a function of fitness assignment. Thus, M-GEOvsl does not
use directly the concept of non-dominance as criterion to
guide the search used in Multi-objective Evolutionary Algo-
rithms (MOEA) like NSGA-II, NPGA, MOGA and SPEA
[6], but uses a rather simpler strategy similar to an early
MOEA, VEGA [6], together with a re-initialization scheme
in order to increase the possibility of finding solutions over
the entire Pareto front.

Figure 3: M-GEOvsl: evolution process

The practical implementation of M-GEOvsl is as follows.
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1. Initialize the population: for the first part of the popu-
lation, generate a random integer value R for the first species
and initialize randomly a string of length R; and for the sec-
ond part, if exists, initialize randomly a string of length S.
Then the population ~x consist of R + 1 species of the first
part, plus S species of the second part:
~x = x0, x1, . . . , xR, xR+1, . . . , xR+S .

2. Mutate each species i to other value muti of its domain,
one at a time, generating ~xi. All objective functions evaluate
~xi, calculating F (~xi) = [F1(~xi), . . . , Fnf (~xi)], where nf is
the number of objective functions. After this evaluation,
the value of the species i returns to its original one. This
process is repeated for all species. Then all nf objective
functions are evaluated to all ~xi, where i = {0, 1, . . . , R+S}.
Using ~xi, the approximation of the Pareto front is verified
and updated, as necessary to contain only non-dominated
solutions, and is kept in a separated archive. A solution
~xp is said to dominate a solution ~xq if and only if Fi( ~xp) ≤
Fi( ~xq), ∀i ∈ {1, . . . , nf}∧Fj( ~xp) < Fj( ~xq),∃j ∈ {1, . . . , nf},
for minimizing F (~x) = [F1(~x), . . . , Fnf (~x)].

3. Choose randomly one objective functions Fc, where c ∈
{1, . . . , nf} and nf is the number of objective functions.

4. Associate a fitness value to each species i as
∆i = Fc(~xi) − ref , where ref is a given reference value.
The fitness indicates the relative gain (or loss) in mutating
the species, compared to a reference value (e.g., zero).

5. Rank the species according to their fitness value. The
first position (k = 1) of the ranking belongs to the least
adapted species. For a minimization problem, lower values
of ∆i will have lower ranking. If two or more species have the
same fitness, rank them randomly with uniform distribution.

6. Choose with uniform probability a candidate species i
to mutate. Generate a random number RAN with uniform
distribution in the range [0,1]. If Pi(k) = k−τ is equal or
greater than RAN , the species is confirmed to mutate. Tau
(τ) is a free parameter set by the user and it regulates the de-
terminism of the search. If τ = 0, any variable has the same
probability to be mutated. On the other hand, the higher
values of τ , the more deterministic becomes the search to
mutate the least adapted variable. In practice, it has been
observed that the values used for τ which maximize the ef-
ficiency of the algorithm lie in the range [1,5]. A new candi-
date species is chosen until a species is confirmed to mutate.
Set the population ~x to ~xi obtained in the step 2.

7. Verify whether the stop criterion is reached. The stop
condition is the maximum number of evaluations of all ob-
jective functions.

8. Verify whether a re-initialization of the population
should be started. The condition to perform a new re-
initialization is numEval = int(maxNumEval/numInd),
where numEval is the current number of evaluations of all
objectives functions, maxNumEval the maximum number
of objective function evaluations and numInd the desired
number of re-initializations. In the affirmative case, the al-
gorithm returns to step 1 and a new population is randomly
generated, keeping the solutions of the Pareto front. Other-
wise, the algorithm returns to step 2.

9. Return the Pareto set and the Pareto front.

To illustrate the steps of the algorithm, consider the prob-
lem of minimizing the following objective functions in rela-
tion to an integer array ~x of length n and an integer y:

Minimize : F1(~x, y) =

n∑
j=1

xyj (1)

F2(~x, y) =

n∑
j=1

(xj − 2)y (2)

A simple numerical example is shown in Table 1 for this
problem. In this case, the population represents the array
~x (variable substring) and the number y (fixed substring).
Firstly, an integer array (~x) of length 4 and an integer value
(y) are randomly generated, then in this moment the pop-
ulation has 6 species. In the second step, all species are
mutated temporarily, one at a time, to rank the fitness of
the species. Note that the first species, which represents the
array length, is mutated from 4 to 6. Thus two integer values
are randomly chosen to complete the array. It is worth not-
ing that before the next species mutates, the early species
returns to the original condition. Each new configuration is
evaluated by both objective functions, obtaining a candidate
point p for the Pareto front. If p is a non-dominated solu-
tion, then p is included in the approximation of the Pareto
front and other solutions dominated by p are removed. In
the example, the objective function F2 is chosen in Step 3.
In the next step, the fitness of the species are determined,
calculating ∆i with ref = 0. Then, all species are ranked by
their fitness value in relation to the selected objective func-
tion F2. Note that the ranking position of the first species
is k = 6 and of the last one is k = 1. It indicates that the
first species is better adapted than the last species, since
mutating the first species, F2 improves less than mutating
the last one.

Table 1: Numerical example of M-GEOvsl steps
Step Population F1 F2 Fc ∆i k

1 Initialize the population
4 | 3 8 10 7 ‖ 2 222 126 − − −

2 Calculate F1 and F2 for each species mutation
6 | 3 8 10 7 9 1 ‖ 2 304 176 − − −
4 |1 8 10 7 ‖ 2 214 126 − − −
4 | 3 3 10 7 ‖ 2 167 91 − − −
4 | 3 8 2 7 ‖ 2 126 62 − − −
4 | 3 8 10 5 ‖ 2 198 110 − − −
4 | 3 8 10 5 ‖ 1 28 20 − − −

3 Select an objective function
4 | 3 8 10 7 222 126 F2 − −

4 Find the fitness of each species
6 | 3 8 10 7 9 1 ‖ 2 304 176 F2 176 −
. . .
4 | 3 8 10 5 ‖ 1 28 20 F2 20 −

5 Rank the species according to its fitness
4 | 3 8 10 5 ‖ 1 28 20 F2 20 1
. . .
6 | 3 8 10 7 9 1 ‖ 2 304 176 F2 176 6

6 Choose a candidate species to mutate
4 | 3 3 10 7 ‖ 2 167 91 F2 91 3

7 Verify if termination criterion is reached
8 Verify if it is necessary a re-initialization
9 Return the Pareto set and Pareto front

In Step 6, one species is selected to be mutated accord-
ing to the pressure of τ on the ranking. In the example,
τ = 1.0 is used and the third species with rank position
k = 3 (not the least adapted) is chosen to mutate. The
mutation is confirmed with RAN = 0.2 because the proba-
bility P (3) = 1

3
= 0.33 is greater than RAN . In this way, the

population length remains with 6 species. However, if the
first species was selected to mutate, the population would
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be increased to 8 species. When the maximum number of
evaluations of all objective functions is reached, the Pareto
set and Pareto front is returned. Otherwise, it is verified
whether a re-initialization should start. Re-initialization is a
common resource in multi-objective approach to avoid local
optimal. Note that M-GEOvsl has only two free parameters
that influence the solutions generation: τ and the number
of re-initializations. In this way, it reduces effort to adjust
the algorithm to a new problem.

3. M-GEOV SL APPLICATION
In this section, we present the application of M-GEOvsl

in the context of test case generation. In the following, an
approach to generate test case from EFSM is proposed using
M-GEOvsl. The EFSM definition and the experiments to
evaluate the approach are also described.

3.1 The model
The system behavior is represented by an EFSM, defined

as a tuple (S, s0, I, O, T, V, P ) in which [2]: S is a finite
set of states; s0 ∈ S is the initial state; I is a set of in-
put events; O is a set of output events; T is a finite set of
transitions; V is a set of variables; and P is a set of input
parameters. Each transition t ∈ T is given by a source state
source(t) ∈ S, a target state target(t) ∈ S and a label of the
form i(t)[g(t)]/a(t) where: i(t) ∈ I, g(t) is a logical expres-
sion called guard and a(t) is the action executed when the
transition is activated. Input events can contain one or more
parameters belonging to P . The parts g and a of the label
are optional. The model can be in only one of the states at
moment. To change the state, it is necessary to trigger a
transition. For a transition to be triggered, the correspond-
ing input event should be received in the current state and
the associated guard should be satisfied. Then the corre-
sponding action a is executed, which may contain assign-
ment statements or produce output events. When an un-
expected input (i.e., input not specified in a given state)
is received, the machine remains in its current state and
generates a null output as response. A transition path is
a sequence of transitions that, for every consecutive pair of
transitions (tj , tj+1), target(tj) = source(tj+1). In order
to illustrate the concepts presented, we use as example the
EFSM M1 of a vending machine [2] (Figure 4).

Figure 4: EFSM M1 for a vending machine

3.2 The test case generation approach
For the problem of generating test case from EFSM, the

population in M-GEOvsl represents a sequence of input
events and their parameters. As explained in Section 2.1,
the population has a variable size part and a fixed size part.
The variable part is formed by the sequence length and the
sequence of input events, and the fixed size contains the
parameters of all input events of the model. Then the pop-
ulation length is variable in relation to the input sequence
length. Each parameter involved in the EFSM under consid-
eration has a corresponding species in the population. We
assume that the input parameters with identical name are
the same, in this way the number of parameters is constant.
Hence, when the parameters in different input events should
not have the same values, different names should be given
to them. It is the case of the input events insertLCups(nl)
and insertSCups(ns) of M1 (Figure 4) that add cups to
the vending machine, but each of them has the respective
parameter. Considering each input event encoded by an in-
teger number, a population for M1 can be:

|seq| input event sequence parameters: nl, ns, p
9 7 0 4 2 7 1 7 2 9 25 93 14

that represents an input sequence with 9 input events
(seq1 = {smallCup()∗, null(), insertSCups(93), setPrice(14),
smallCup()∗, coin(), smallCup(), setPrice(14)∗, tea()}) and
all 3 parameters of M1.

The test cases derived from EFSM correspond to transi-
tion paths triggered by input sequences. Instead of the static
approaches used by traditional techniques to generate the
test cases, we use an executable model to produce the tran-
sition path dynamically during the execution of the EFSM.
The executable model implements the behavior of an EFSM
in a programming language and has some advantages: i.
the user can validate the model before start generating test
cases; ii. executing the model during the evolution process
is more cost effective than executing the actual implementa-
tion, since the model abstracts away many details, such as
access to a database or communication through a network.
iii. the test case can be generated even when the source code
is not available, like third-party components.

The interaction between the executable model and M-
GEOvsl is illustrated in Figure 5. M-GEOvsl generates an
input sequence and the executable model informs the path
triggered by this sequence, taking into account all the data
involved in the guard conditions. Then, M-GEOvsl evalu-
ates the traversed path according to the test criterion. To
guide the algorithm, dependence analysis of the EFSM is
used to direct the search toward the test criterion.

Figure 5: Interaction between M-GEOvsl and the
executable model

The executable model is instrumented to produce the tran-
sition path triggered by the generated input sequence. When
a transition t is executed, the input event i(t) is received
and the guard g(t) is verified, considering the current state
s and source(t) = s. The action a(t) is executed, if g(t) is
true; otherwise, a null output is produced. In case an un-
expected event is received, the model is executed according
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to the completeness assumption. Since the data to trigger
a transition path is generated and considered during model
execution, we prevent the generation of infeasible paths, at
least at the model level.

It is worth noting that the terms input sequence and test
case are distinct. An input sequence consists of a sequence
of input events and their parameters. A test case, on the
other hand, is the transition path triggered during model
execution according to the given input sequence. Since the
machine can be incomplete, i.e., the input sequence can con-
tain unexpected events, the path length is not necessarily
equal to the sequence size. In the example above, the un-
expected inputs in seq1 are marked with the symbol “*”.
The path triggered by seq1 (path = {t1t6t3t2t9t13}) has 6
transitions while the sequence length is 9.

In summary, the steps of the test case generation approach
using M-GEOvsl are the following: 1. elaborate an EFSM
M to represent the behavior of the system under test, based
on its specification; 2. obtain an executable model of M ;
3. validate M ; 4. analyze the dependences of M ; 5. generate
the test cases using M-GEOvsl.

To guide the test case generation, two objective functions
are used in M-GEOvsl: the test purpose coverage (F1) and
the minimum length of the input sequence (F2). Due to the
cost of test case execution time, the trade-off is to find a
minimum length of the input sequence but long enough to
cover the test purpose. We consider the test purpose as a
target transition of the model to be covered. These objective
functions are described in a previous work [22]; here we give
an overview, for the sake of completeness. F2 intends to
minimize the input sequence length. A value into the range
[0,1] is added to the sequence size in the sense of penalizing
unexpected inputs, since no transitions are taken with these
inputs.

Minimize : F1 = AL+ND (3)

F2 = |seq|+ (1− 1.001−unexpected inputs) (4)

where

AL = 2 ∗ |Taffecting | −RW

ND = 1− 1.001−d

RW =

{ |T ′affecting | if not cover t;

|T ′affecting |+ |Taffecting | if cover t.

F1 is the function that represents information about the
model in order to guide the search toward the test purpose.
For F1 evaluation, we define the sets of transitions Taffecting
and Tcritical using the information obtained from the de-
pendence analysis of the model, which identifies the control
and/or data relationships among the transitions. It is im-
portant to emphasize that these transitions sets are obtained
in an early step of the evolution process. Considering a tran-
sition t, Taffecting(t) contains all transitions upon which t is
directly or indirectly control and/or data dependent, based
on the dependence graph. The idea is to identify the tran-
sitions that could potentially affect t.

Def. 1. Taffecting(t) consists of the transition t and the
transitions obtained by a backward traversal of the depen-
dence graph starting at t.

To determine Tcritical, we extend the concept of critical
branching node [17] for an EFSM transition. In code-based
testing, this is a branching node with an exit that, if taken,
the test path misses the target.

Def. 2. A transition tc is critical with respect to a target
transition t if tc /∈ Taffecting(t) and ∃ta ∈ Taffecting(t) such
that source(tc) = source(ta) and there exists a path π such
that tc ∈ π and t /∈ π.

An algorithm to find the critical transitions for a given
test purpose t is shown in Figure 6. In order to penal-
ize the solution that takes a critical transition, F1 uses a
penalty value d. To determine the value of d, the transitions
ta ∈ Taffecting(t) with the same source state of a critical
transition (tc) need to be analyzed and two situations need
to be considered: i. the input event of tc and ta are the
same but the guards are different and ii. the input event of
tc and ta are different. In the first case, the distance d is
computed using the functions defined by Tracey et al. [19].
In the second case, taking tc receives a penalty γ in order to
distinguish solutions with different input events.

input: test purpose t
Ta = getTaffecting(t)
for ∀ti ∈ Ta do
S = getSiblings(ti)
for ∀tj ∈ S do

if tj /∈ Ta then
if event(tj) == event(ti) then
addTcritical(tj , distanceFunction(ti))

else
addTcritical(tj , γ)

end if
end if

end for
end for
output: Tcritical(t)

Figure 6: Algorithm to determine Tcritical

Using Taffecting and Tcritical, the terms of F1 can be cal-
culated: approach level AL and normalized distance ND.
The approach level AL measures how close an input se-
quence is to reach a path that traverses the test purpose t.
The value of AL is related to the number of transitions of
Taffecting that were triggered (|T ′affecting|) during model
execution. The triggered transitions of Taffecting are used
to minimize AL. If the sequence produces a path that tra-
verses t (i.e., t is covered), the fitness value is rewarded with
|Taffecting|. Then, the transitions ta ∈ Taffecting(t) are
used to guide the search toward t. The normalizing distance
ND is calculated at the point where the control flow takes a
critical transition tc ∈ Tcritical(t), that diverges away from a
transition ta ∈ Taffecting(t). The term d in ND is defined as
described earlier. The concepts of AL and ND are inspired
from the SBST for code-based testing [16]. In general, AL
is calculated verifying if a given path is traversed and, in
contrast, we use the transitions of Taffecting to guide the
search. The term ND is based on the work of Baresel et
al. [3]. However, to determine d, we need to consider that
more than two transitions can have the same source state
in an EFSM, in contrast to code-based testing that only the
true and false branch of a node are verified.
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3.3 Experiments
The experiments concern the following research questions:

Q1: How to guide the decision maker to select the test cases?
Q2: How well do the generated test cases result in compar-

ison to existing approaches?
Table 2 describes the subject models in terms of number

of states (|S|), transitions (|T |), input events (|I|) and pa-
rameters (|P |), and also their CCS (Cyclomatic Complexity
of State machine) [20]. CCS is an adaption of metrics for de-
sign complexity of state models: CCS = |T |+ |I|+ |AG|+2,
where AG is the set of atomic expressions in the guards. The
models represent different sources. The first three models
were used in [2] and the last one in [13].

Table 2: Experimental Models
Models |S| |T| |I| |P| CCS
M1 : vending machine 7 28 11 3 65
M2 : cashier 12 21 15 7 51
M3 : fuel pump 13 25 16 5 63
M4 : transport protocol 6 21 13 14 57

3.3.1 Experimental set up
Before starting the test case generation, M-GEOvsl was

adjusted for the problem being tackled. To tune the control
parameter τ , the range of [1,5] was used with increment of
0.25. The stopping condition was defined as 105 function
evaluations with 50 re-initializations. For F1, the term d
was calculated with K = 100 and γ = 1000 . In relation to
the population domain, the first element that represents the
input sequence length is a positive integer smaller than 100.
The input event domain is related to the input alphabet I of
each model, being values from 1 to |I|. The parameter values
are defined as positive integers. The number of parameters
in the population is presented in Table 2. We used a Pentium
4 with 3.00 GHz and 1 GB of RAM memory.

The influence of the parameter τ in M-GEOvsl can be
seen in Figure 7. It indicates that an intermediate value of
τ in the range [1, 5] gives better results, meaning that a too
deterministic (τ = 5.0) or too random (τ = 1.0) search is
less prone to find the Pareto front for this problem.

Figure 7: Influence of τ in M-GEOvsl

Once obtained τ = 3.75 as the best result in the tun-
ing process, M-GEOvsl was executed to cover each transi-
tion of the subject models. We performed 10 runs per test
purpose with 106 objective function evaluations and 100 re-
initializations. The input sequence could be composed of

500 input events at maximum. It is important to clarify
that this maximum value is used to avoid the generation of
too long sequences. Considering the subjects, it is already a
high value for the sequence length. The domain of the other
population elements and the constants of the term d were
defined as before. To evaluate the results for each transition,
we build only one Pareto front from all fronts obtained in
each run, plotting the non-dominated points in relation to
all solutions generated in all runs.

For the testing approach, two tools were used: SMC1

(State Machine Compiler) tool to obtain the executable mod-
els, and SLIM (SLIcing state based Model) tool [2] for the
control and data dependence information. The source code
of the executable model is in Java, in order to keep the lan-
guage compatibility used in the test generator prototype.

3.3.2 Results
In relation to the cost of the test case generation approach,

Table 3 shows the cost for all transitions of each model:
the transition coverage, the average number of points in the
Pareto front (Avg. Size) and its standard deviation (σp),
and the average number of evaluations of the objective func-
tions to find the solution (Avg. Eval.) and its standard de-
viation (σe). For all models, we obtained 100% of transition
coverage, which means that the algorithm was able to find
solutions to each transition of the model. Then, a Pareto
front was produced with at least one point, for each tar-
get transition. Each point represents a successful path that
covers the test purpose. It is worth noting that although
the stopping condition for M-GEOvsl was 106 evaluations,
less than half of this number was necessary to obtain a solu-
tion, on average. Each run of M-GEOvsl took approximately
22.28 seconds.

Table 3: Average results for all models
Model Coverage Avg. Size σp Avg. Eval. σe

M1 100% 16.21 4.98 510913.61 61999.98
M2 100% 7.29 3.68 423318.67 183100.70
M3 100% 2.84 1.65 486978.85 247153.34
M4 100% 15.33 3.73 496579.78 104922.17

Q1: To guide the tester in her/his decision, the Pareto
front and the Pareto set for each transition can help. For
instance, Figure 8 shows the Pareto front for the transition
t8 of M1. The set of solutions are the trade-off between
the objective functions F1 and F2. Table 4 provides in-
formation of some points of the front: the generated path,
the path length (|Path|), the corresponding input sequence
length (|Seq|) and the number of objective function evalua-
tions to find the solution (#Eval). In case of minimizing F2,
the shortest input sequence can be obtained whereas, prob-
ably, few transitions of Taffecting are covered. On the other
hand, more transitions of Taffecting can be taken minimiz-
ing F1 but the input sequence can have a long length. As
more than one solution can be generated for each test pur-
pose, the test team plays the role of the decision maker to
select the solution. The more solutions in the Pareto front,
the more alternatives the test team have. Shortest test cases
can be selected, when test case execution time is high. For
this intent, the shortest path to t8 (path p1 of Table 4) can
be used. When test case execution time is not an issue, the

1Available in http://smc.sourceforge.net.
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tester can opt for the longest test cases. Since they con-
tain more steps (input interactions), more transitions can
be verified at once. For instance, it is possible to traverse
15 different transitions using the path p5.

Figure 8: M1: Pareto front for t8

Table 4: Pareto set for tx of M1
Path |Path| |Seq| #Eval

p1 : t1t3t2t8 4 5 599550
p2 : t1t5t3t5t2t9t8t10 8 8 866520
p3 : t1t3t5t6t2t8t10t14 8 9 885326
p4 : t1t5t3t6t4t3t2t9t8t10t10t9t11 15 15 247502

t19t19
p5 : t1t6t6t6t6t6t3t6t2t8t12t6t5t2t9t8 28 29 995738

t13t2t10t11t28t6t2t11t19t18t20t3

Q2: The work of Kalaji et al. [13, 12] is one of the closest
SBST approach based on the EFSM model we could find
of our approach for comparison purposes. All paths found
in [13] to cover each transition of the model M4 were used to
compare with our approach. The main differences of their
approach with respect to ours are: i) a genetic algorithm was
used with a single objective optimization. They performed
1000 generations with a population of 25 individuals. ii)
the test case length was not part of the evolution process in
their approach. It was fixed in 11 for the model M4; iii) the
test cases generation occurred in two steps. In the first, they
generated the transition paths, and in the second they ran-
domly generated the test data to trigger those paths. Each
path found in [13] was evaluated using F1 and F2, obtaining
the point pk in the objective function space. We analyzed
pk in relation to the Pareto front produced by M-GEOvsl.
To illustrate, Figure 9 shows the Pareto front obtained by
M-GEOvsl for t5 and the point pk (indicated by �), which is
a dominated solution, hence not being an optimal solution
for the problem. On the other hand, for transition t6, the
point pk is a non-dominated solution in the objective func-
tion space, as presented in Figure 10. In fact, it dominates 4
solutions on the Pareto front found by M-GEOvsl. For each
transition of M4, Table 5 shows the number of solutions on
the Pareto front found by M-GEOvsl (pf), and the percent-
age of solutions (nd) on this front not dominated by the solu-
tion pk, for each transition. For 9 of the 20 transitions to be
covered, the Pareto front obtained by M-GEOvsl dominated
the solutions found by Kalaji et al.. For the other transi-
tions, the points pk are non-dominated solutions, hence they
can be considered optimal solutions from a multi-objective
perspective.

Figure 9: M4: Pareto front for t5

Figure 10: M4: Pareto front for t6

Table 5: M4: Number of solutions on the Pareto
front found by M-GEOvsl (pf) and percentage of so-
lutions that are not dominated by pk (nd)

Trans. pf nd (%) Trans. pf nd (%)
t0 20 95.00 t11 5 100.0
t1 19 89.47 t12 15 100.0
t2 14 100.0 t13 14 92.86
t3 19 79.94 t14 12 91.67
t4 13 84.61 t15 17 94.12
t5 13 100.0 t16 19 100.0
t6 18 77.78 t17 13 92.31
t7 15 80.00 t18 20 100.0
t8 14 64.28 t19 11 100.0
t9 14 92.85 t20 17 100.0
t10 20 100.0

4. CONCLUSIONS
The steps of the algorithm of a new multi-objective imple-

mentation of the GEO method (M-GEOvsl) were presented.
M-GEOvsl allows the variation of the size of the string that
encodes the design variables. It must be pointed out that
although M-GEOvsl was developed in a specific context, it
can in principle be applied to any multi-objective problem
where the number of design variables is itself a variable of
the problem.

An approach to generate test cases from EFSM using M-
GEOvsl was described, presenting the following contribu-
tions: i. a dynamic approach is used for model-based test
case generation, in which the model is the artifact that is
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executed, instead of the implementation of system under
test. Then, test cases can be generated early in the devel-
opment process, or in any situation in which source code
is not available; ii. the transition paths, together with the
data that trigger them, are obtained during evolution pro-
cess. This intends to avoid infeasible path generation, at
least at the model level; iii. a multi-objective approach is
proposed not only to cover the test purpose, but also to
minimize the test case length. In this way, it is no longer up
to the customer to decide which test case length is better
for a given target transition, as M-GEOvsl can determined
the length automatically; iv. dependence analysis is used to
guide the search for solutions.

In the experiments, a hundred percent of test purpose cov-
erage was obtained for all benchmark models and also most
of the generated solutions presented better results than a
related work. A further work is to consider only the param-
eters involved in the generated input sequence, instead of
optimizing all parameters of the model.
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