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ABSTRACT

Classifying tropical deep convective systems by the mesoscale distribution of their cloud properties and

sorting matching precipitation measurements over an 11-yr period reveals that the whole distribution of

instantaneous precipitation intensity and daily average accumulation rate is composed of (at least) two

separate distributions representing distinctly different types of deep convection associated with different

meteorological conditions (the distributions of non-deep-convective situations are also shown for com-

pleteness). The two types of deep convection produce very different precipitation intensities and occur with

very different frequencies of occurrence. Several previous studies have shown that the interaction of the large-

scale tropical circulation with deep convection causes switching between these two types, leading to a sub-

stantial increase of precipitation. In particular, the extreme portion of the tropical precipitation intensity

distribution, above 2 mm h21, is produced by 40% of the larger, longer-lived mesoscale-organized type of

convection with only about 10% of the ordinary convection occurrences producing such intensities. When

average precipitation accumulation rates are considered, essentially all of the values above 2 mm h21 are

produced by the mesoscale systems. Yet today’s atmospheric models do not represent mesoscale-organized

deep convective systems that are generally larger than current-day circulationmodel grid cell sizes but smaller

than the resolved dynamical scales and last longer than the typical physics time steps. Thus, model-based

arguments for how the extreme part of the tropical precipitation distribution might change in a warming

climate are suspect.

1. Introduction

Some of the concern about possible negative impacts

of a warming climate is focused on possible increases of

precipitation extremes. For the case of large precip-

itation amounts that cause flood damage, larger total

accumulation can be produced by events with larger aver-

age precipitation intensities (average of the instantaneous

intensity in mm h21 over space and time, excluding the

zero values), events with more moderate average in-

tensities but longer durations (and slower motions), or

even more frequent events of moderate average in-

tensity. Discussions of climate model behavior (e.g.,

Meehl et al. 2005) often focus on extremes of total

precipitation accumulation (expressed as an average

accumulation rate, either in mm h21 or in mm day21, the

average intensity but with zero values included), whereas

observational studies, especially satellite-based ones,

often focus on the precipitation intensity and its fre-

quency of occurrence (e.g., Zipser et al. 2006; Stephens

et al. 2010; Lee et al. 2013). To distinguish between these
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two kinds of precipitation extremes in this paper, we will

refer to the instantaneous precipitation and its average

(excluding zero) values as the intensity and average in-

tensity, respectively, and refer to the daily accumulated

amount of precipitation in terms of an average pre-

cipitation accumulation rate (or just rate average in-

tensity including zero values).

Changes of the global total precipitation in a warming

climate are constrained by changes in the net surface

radiation and not the total water vapor abundance, be-

cause the global total precipitation has to equal the

global mean surface evaporation (cooling) that balances

(approximately) the surface net radiative heating. This

constraint on total precipitationmeans that it will increase

in a warming climate more slowly than the water vapor

abundance (e.g., Allen and Ingram 2002; O’Gorman and

Schneider 2009; Stephens and Hu 2010). Regional

changes in precipitation will not necessarily follow the

global constraint. The simplest argument for an increase

of extreme precipitation in a warming climate is that,

since the amount of precipitation produced by extreme

precipitation events far exceeds the local, within-storm-

area water vapor supply from the atmospheric column

and surface, such storms must be fed by larger-scale

moisture convergence, which would scale like increases

in the water vapor abundance, all other things being

equal (e.g., Trenberth et al. 2003). Hence, if precipitation

extremes were to increase like the water vapor abun-

dance in a warming climate, but the total precipitation

were to increase more slowly, the frequency of all pre-

cipitation events would have to decrease (Trenberth et al.

2003). Whether the required decrease appears uniformly

over the whole precipitation intensity distribution or is

limited to some portion of the distribution is not obvious

and likely depends on the controlling dynamics.

Allan and Soden (2008) look at how precipitation

distributions change by examining observed and mod-

eled changes during El Niño events. They show that the

frequency of lighter precipitation decreases and the

frequency of the heaviest precipitation increases in one

dataset [the combined Remote Sensing Systems, version

6 (RSS-V6)1Global Precipitation Climatology Project

(GPCP) dataset studied byWentz et al. (2007)]—that is,

that there is a shift of the whole distribution to larger

values—but also show that a variety of climate models

all exhibit increases of both the lightest and heaviest

precipitation frequencies (i.e., a change of the distribu-

tion shape; see also Feldl andRoe 2011).We also note in

passing that the Allan and Soden (2008) study docu-

ments the fact that ‘‘extreme’’ precipitation in climate

models is very different from what is observed: of the 10

models considered, 9 have 95th percentile precipitation

rates (mm day21) that are 3 to 4 times smaller than those

observed in the combined RSS-V6 1 GPCP dataset. In

other words, most climate models exhibit precipitation

rates that are concentrated atmuch too small values and,

since their global total precipitation is approximately

correct because of energy balance, they exhibit much

too frequent precipitation events (cf. Stephens et al.

2010). In any case, current atmospheric models exhibit

changes of extreme tropical precipitation rates that do

not scale with water vapor changes (Allen and Ingram

2002; Held and Soden 2006; Kharin et al. 2007). Regional

observation-based analyses also do not show such sim-

ple scaling (e.g., Groisman et al. 2005; Lenderink and

van Meijgaard 2008). Since changes in total precipi-

tation, particularly in the tropics, imply changes in the

latent heating of the atmosphere and the consequent

strength of the whole general circulation, this dynamic

feedback might explain why the changes in the extreme

part of the precipitation distribution are different from

changes of the average precipitation (Emori and Brown

2005; Held and Soden 2006). But exactly which modeled

changes appear, especially in the extreme part of the

distribution, is strongly dependent on the particular

convection parameterization employed (cf. Zhang and

McFarlane 1995; Jakob and Siebesma 2003; Hourdin

et al. 2006; Kharin et al. 2007; Jung et al. 2010). This

parameterization dependence may explain why the

model agreement for precipitation changeswith changing

climate is much poorer in the tropics than in the extra-

tropics (Kharin et al. 2007; O’Gorman and Schneider

2009). In at least one model, precipitation changes with

climate are smaller than the effects of changing the con-

vective parameterization (Wilcox and Donner 2007).

In almost all of the discussion in the literature on the

topic of extreme tropical precipitation, tropical deep

convection is considered to be a single phenomenon

producing a continuum of precipitation intensities. For

instance, the model-based study of Emori and Brown

(2005) and the discussion in Held and Soden (2006) both

assume that tropical deep convection is a single phe-

nomenon. Theoretical analyses often take this approach

as well; for example, Katz (1999) concludes in a case

study that the most important change of precipitation

distribution is not the distribution shape factor but the

scale factor determining the frequency of occurrence as

if the changes are distributed across the whole accu-

mulation amount distribution.

Recent observational analyses of tropical cloud prop-

erties and behavior based on the International Satellite

Cloud Climatology Project (ISCCP) products (Rossow

and Schiffer 1999) have drawn attention to the fact that

there is more than one type of tropical deep convection

(Jakob and Tselioudis 2003; Jakob et al. 2005; Rossow

et al. 2005a; Jakob and Schumacher 2008; Tromeur and
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Rossow 2010; Tselioudis and Rossow 2011; Mekonnen

and Rossow 2011; Lee et al. 2013), but this recognition is

not really new as attested to in comprehensive reviews

of earlier conventional observations of tropical storm

systems (e.g., Houze andHobbs 1982; Cotton andAnthes

1989; Emanuel 1994; Houze 2004). Satellite-based size

and lifetime distributions have also suggested a range of

deep convection types and that deep convective system

size and duration increase together (e.g., Machado et al.

1998). Theoretical studies have long examined a number

of reasons for these different types of tropical convective

systems (Moncrieff 1981, 1992, 2004; Houze 2004).

Tromeur and Rossow (2010) specifically show that the

weather states, defined by distinctive mesoscale patterns

of cloud property joint distributions in the ISCCP

products (see section 2b), have very different average

precipitation intensities associated with them (cf. Mohr

et al. 1999; Houze 2004; Lee et al. 2013).

Many previous studies have recognized the occur-

rence of different types of deep convective cloud sys-

tems in the tropics, but the study of the Madden–Julian

oscillation (MJO) by Tromeur and Rossow (2010) and

the initiation of African easterly waves by Mekonnen

and Rossow (2011) shows that both of these phenomena

involve a distinct ‘‘switching’’ of deep convection types

in the interaction with the large-scale circulation that

is also associated with a characteristic increase in pre-

cipitation. In other words, the large-scale wave distur-

bances change the predominant type of deep convection,

switching from a type with a much smaller precipitation

rate to a type with a much larger precipitation rate,

suggesting a positive feedback on the large-scale waves.

This switching also suggests that scattered, smaller-scale,

ordinary deep convection cannot ‘‘obtain’’ enough water

vapor to produce themuch larger precipitation intensities

of the mesoscale systems and implies that mesoscale

organization on a larger scale is required to produce

truly extreme precipitation events. This behavior also

raises the possibility that such dynamic switching could

play a role in how extreme precipitation changes with

climate.

Mohr et al. (1999) used one year of 85-GHz brightness

temperatures from the Special Sensor Microwave Im-

ager (SSM/I) to classify tropical objects by size (two

categories divided by a system area equivalent to a ra-

dius of about 25 km) and convective intensity and used

the same data to estimate precipitation intensity as well.

They concluded that more than 70% of the total tropical

precipitation is produced by the larger systems that

represent fewer than 20% of precipitating systems. Note

that the microwave measurements are only sensitive to

the precipitating portion of these cloud systems, not the

whole cloud system, so the sizes mentioned above are

smaller than the whole-system sizes discussed later. We

note that Houze (2004) also states that the mesoscale

convective systems account for most of the tropical

precipitation.

Here, we exploit more than a decade of independent

cloud and precipitation data products covering the whole

tropics (158S–158N) to more clearly separate the contri-

butions to average precipitation intensity and daily av-

erage accumulation rate made by the different types of

deep convective systems.

2. Datasets

a. Precipitation

TRMM MULTISATELLITE PRECIPITATION

ANALYSIS

The main precipitation dataset we use for this analysis

is the Tropical Rainfall Measuring Mission (TRMM)

Multisatellite Precipitation Analysis TRMM 3B42,

version 6 (TMPA; Kummerow et al. 2000; Huffman

et al. 2007), to examine the effects of different space and

time resolutions on the distribution of precipitation in-

tensity and rate. TMPA combines various products into

a 0.258 3 0.258 horizontal grid covering 508S–508N, in-

cluding satellite passive microwave precipitation esti-

mates from SSM/I, the Advanced Microwave Scanning

Radiometer for Earth Observing System (AMSR-E),

and the Advanced Microwave Sounding Unit (AMSU);

satellite infrared (IR) estimates; and precipitation gauge

measurements (over land). We use the period 1998–

2008. TMPA is similar to the Global Precipitation Cli-

matology Project [we compare precipitation rates with

the GPCP product One-Degree Daily (1DD), version

1.1; Huffman et al. 2001; Adler et al. 2003] in its use of

land-based gauge data to adjust the satellite retrievals at

the monthly level, but it uses a different passive micro-

wave algorithm and more microwave satellites. The

TMPA algorithm is trained by the TRMM combined

precipitation radar and passive microwave product

(2B31; Kummerow et al. 2000).We interpret the quantity

that is reported in TMPA at 3-h intervals to be an esti-

mate of precipitation intensity. However, we note that

extreme values of precipitation intensity in the TMPA

dataset are about 10–15 mm h21, whereas the extreme

values shown by Berg et al. (2010) from the TRMM

Precipitation Radar approach 100 mm h21.

b. Tropical deep convection types

1) ISCCP WEATHER STATE PRODUCT

One of the ISCCP products (called D1) reports the

satellite-derived properties of clouds for a 2.58 hori-

zontal map grid over the globe at 3-hourly intervals from
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July 1983 through December 2009, including joint me-

soscale distributions of cloud-top pressure and optical

thickness during daytime (Rossow and Schiffer 1999). A

statistical analysis of these joint frequency histograms

has identified distinct patterns, called weather states

(WS), that have been shown to be associated with dif-

ferent atmospheric conditions (Jakob and Tselioudis

2003; Jakob et al. 2005; Jakob and Schumacher 2008).

The ISCCP WS products are produced by analyzing the

whole data record to identify the WS patterns and then

classifying each individual D1 joint histogram by which

of the WS it most closely resembles [see details of the

method in Rossow et al. (2005a)]. To date, this analysis

has been performed for four different latitude zones: the

tropics (6158 latitude), the extended tropics (6358 lat-
itude), and the northern and southernmidlatitudes (308–
658 latitude in each hemisphere), covering the period

from July 1983 through December 2009. These data

products are available from http://crest.ccny.cuny.edu/

rscg/products.html. In the tropics (Rossow et al. 2005a),

the WS have been shown to be associated with very dif-

ferent average precipitation rates (Tromeur and Rossow

2010; Lee et al. 2013) and radiative effects (Oreopoulos

and Rossow 2011), and to exhibit different behavior in

interactions between deep convection and large-scale

waves (Tromeur and Rossow 2010; Mekonnen and

Rossow 2011).

In this study we use the tropics’ WS product: the six

WS patterns of cloud-top pressure and optical thickness

are shown in Fig. 1 (Rossow et al. 2005a). To understand

these WS, first notice that the frequency (indicated by

color in the figure) of each pair of cloud properties is

related to the average fraction of the area covered by

clouds with those properties: the larger the frequency,

the larger the fraction of the 2.58 map grid cell covered.

Second, remember that a number of studies have shown

that thicker (optical thicknesses .23), higher-topped

(top pressures ,440 mb) clouds in the upper right in

these histograms are closely related to deep convective

towers, higher-topped but moderately thick clouds are

related to mesoscale anvil clouds, and higher-topped but

optically thin clouds are cirrus [see a summary of these

results in Rossow and Schiffer (1999)]. Thus, these six

WS are described as follows.

WS1 is dominated by mesoscale anvil clouds but also

includes the largest area covered by deep convective

clouds of any WS. WS2 is also composed of mesoscale

anvil clouds with very few deep convective clouds. We

know that these anvil clouds are mesoscale because the

average cloud cover for these two WS is .0.9 (see next

section). WS3 is dominated by less thick (,10) and

lower-topped clouds that are mixed with a small fraction

of deep convective clouds, more than in WS2, as well as

some cumulus congestus (very optically thick but mid-

level cloud tops). Note that only clouds with optical

thicknesses greater than about 20 produce any appre-

ciable precipitation (Lin and Rossow 1997). Note also

that about one-third of the dominant cloud type in WS3

(midlevel, low to moderate optical thickness) is known

to be composed of thin cirrus overlying boundary layer

clouds, which ISCCP places at middle levels (cf. Jin and

Rossow 1997; Rossow et al. 2005b; Rossow and Zhang

2010). Finally, note that a recent analysis of CloudSat

cloud profiles indicates that about half of what are called

cumulus congestus are actually just transient deep con-

vective clouds still growing upward (Luo et al. 2009).

The key fact about WS3 is that it contains deep con-

vective clouds but their small frequency of occurrence

(coverage) indicates their small size, equivalent to iso-

lated cumulonimbus.

For completeness, we also describe the three ‘‘non-

convective’’ WS. WS4 is dominated by cirrus (optically

thin, high topped) clouds with small amounts of cumulus

(small optical thickness, low topped) clouds as well as

some clouds at all levels, which are, in part, mixtures of

cirrus and boundary layer clouds (Rossow et al. 2005b).

WS5 is dominated by low-topped clouds with relatively

smaller optical thicknesses, interpreted to be shallow

cumulus, and WS6 has thicker low-topped clouds char-

acteristic of stratocumulus and stratus clouds.

The major distinction among these WS is that the first

three contain or are closely associated with deep con-

vection and the last three states represent suppressed

conditions with only shallow (boundary layer) convec-

tion (Jakob and Tselioudis 2003; Jakob et al. 2005;

Rossow et al. 2005a). The key point for this paper is that

this analysis shows that there are (at least) two different

types of deep convective WS in the tropics, identified as

WS1 and WS3. All of the studies with the tropical WS

have shown a very close association of WS1 and WS2

(henceforth WS12), where WS1 is the core and WS2 is

the mesoscale anvil of the convective systems that are

much larger than the 2.58 grid cell. These systems have

the largest areas (indicated by large frequencies in Fig. 1)

covered by deep convective clouds (cf. Oreopoulos and

Rossow 2011). On the other hand, WS3 contains only a

small area covered by deep convective clouds, inter-

preted to be ordinary deep convection.

2) ISCCP CONVECTIVE SIZE/CONVECTIVE

TRACKING PRODUCTS

To further distinguish the differences of deep con-

vective types, we use the WS to composite another

ISCCP-based product obtained from the analysis pro-

cedure of Machado et al. (1998). This analysis identifies

contiguous regions using infrared brightness temperatures
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(Tb) of cold cloud tops (Tb , 245 K) and convective

cloud tops (Tb , 220 K) in each geostationary satellite

image at 3-h intervals and tracks the motion and evo-

lution of the larger systems [see Machado and Rossow

(1993) and Machado et al. (1998) for a discussion of

these thresholds]. The first analysis step produces the

ISCCP convective size (CS) product, which contains

information about the sizes and properties of all cold

cloud objects. The second analysis step produces the

ISCCP convective tracking (CT) product (available on-

line at http://isccp.giss.nasa.gov) with additional infor-

mation about the time variation of the cold cloud objects,

including their motion, sizes, and durations. Both of

these products currently cover the period from July 1983

through June 2008. The ISCCP CS dataset is here used

to determine the WS sizes only for cold cloud systems

containing deep convective clouds, where size is expressed

as the radius of a circle with the same area down to a limit

of 17 km (the area of the convective system cloud is

larger than the precipitating cloud area and the updraft

area; Machado et al. 1998). The WS1 size distribution

peaks at about 124 km, whereas the size distribution of

WS3 systems peaks at the smallest size that can be esti-

mated by the CS dataset (17 km). The CT dataset is used

to determine the durations of the different types of deep

convection: most WS3 systems have durations,6 h, the

lower limit for tracking systems in the CT dataset,

whereas most WS1 systems have durations .6 h.

3. Precipitation intensity/rate distributions
and extreme values

The shape of the precipitation intensity distribution is

sensitive to how the frequency histogram is formed as

demonstrated by the wide variety of approaches repor-

ted in the literature. We choose to display, as a function

of intensity (or rate), the frequency of occurrence mul-

tiplied by the intensity (or rate) and divided by the total

precipitation amount so that the vertical axis shows the

fractional contribution in percent of each intensity (or

rate) range bin to the total rainfall. Different bin widths

also affect the distribution shape; we choose equal in-

tervals of 0.15 mm h21 (or mm day21) to better capture

the contribution of the smaller intensities (or rates), but

FIG. 1. Six distinctive patterns, called weather states (WS), found in the joint mesoscale frequency distributions of cloud-top pressure

(mb; vertical axis) and optical thickness (unitless; horizontal axis) obtained from the analysis of individual daytime histograms of these

cloud properties in the ISCCP D1 data product from July 1983 through June 2008 in the tropical zone (6158). The colors indicate the

frequency of each pair of cloud-top pressures and optical thicknesses values as area cloud fractions (in percent; these values do not add to

100% because clear sky is excluded). The relative frequency of occurrence (RFO) for each WS is shown.
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plot the results against the log of intensity (or rate) to

more clearly show the larger values. This choice distorts

the areas in the plot so that the figures cannot be used to

judge the total contribution of each range of pre-

cipitation intensity/rate. Instead we provide tables that

give the distribution percentiles. To define the extreme,

we follow the recommendation in Nicholls and Murray

(1999) to quantify some large percentile (e.g., 95th) of

the distribution of daily average precipitation rate, but

focus on a similarmetric for precipitation intensity. Note

that we give percentile values for the precipitation in-

tensity (or rate) distributions in the tables but we plot

the fractional contribution of each intensity (or rate)

in the figures. Thus, when we mention percentile values

in the text and tables, it refers to the percent of the total

population of events, not to the percent of the total

precipitation. Remember that we refer to precipitation

intensity in millimeter per hour as the instantaneous or

average precipitation intensity, excluding zero values,

and the average precipitation rate, which includes zero

values in the average and is reported in either millimeter

per hour or millimeter per day.

For this analysis, we treat the original resolution

TMPA values at 0.258 and 3-h intervals as representing

the instantaneous precipitation intensity distribution,

but note that the higher-resolution TRMMPrecipitation

Radar (PR) data [about 5 km compared to 25 km; shown,

e.g., in Berg et al. (2010)] has extreme values almost 5

times larger than TMPA. Figure 2 further illustrates the

effect on the precipitation intensity distribution from

TMPAproduced by averaging the 0.258 data over a larger
spatial domain tomatch the ISCCPWS resolution (2.58).

As expected, the spatially averaged intensity (zero

values excluded) decreases, especially the extreme (95th

percentile) values, which decrease by almost a factor of

2, producing more frequent intensities at and below

1 mm h21 (Table 1). Nevertheless, the smaller shift of

the intensity distribution near 1–2 mm h21 produced by

spatial averaging suggests that the spatial scale of larger

intensity events is larger than 25 km (see section 4). Also

shown in Fig. 2 and Table 1 is the effect of including zero

values in the spatial average; the most significant change

is that more than 70% of the precipitation distribution is

at intensities ,0.2–0.3 mm h21 instead of only 25%

originally. Extreme precipitation intensity decreases by

almost another factor of 2.

Figure 3 illustrates the effect on the precipitation in-

tensity distribution produced by averaging over one day

at 0.258 resolution. Again we see the expected shift to

smaller intensities, especially when zero values are in-

cluded, but the decrease of the extreme values is only

about 30%, which can be understood by the fact that the

convective systems producing the extreme intensities

and rates are longer lived than 3 h (see section 4). Table 2

shows the daily-averaged precipitation accumulation

rates at 1.08 from TMPA: notably, the daily average rates

in the large extreme part of the distribution are not that

much smaller than the daily average intensities. Table 2

also compares the daily average TMPAdistributions with

the GPCP-1DD distribution. This comparison suggests

that the GPCP dataset is more like the average pre-

cipitation intensity from TMPA than the average accu-

mulation rate, but with much larger extreme values,

which might cause some confusion.

4. Results and discussion

Figure 4 shows the precipitation intensity distribu-

tions of the ISCCPWSmatched at 2.58 and 3-h intervals

FIG. 2. Distribution of precipitation intensities (mm h21) from

TMPA at 3-h intervals at 0.258 and averaged to a 2.58 resolution
with (10) and without (20) zero values included. The vertical axis

shows the frequency of occurrence of each value, binned uniformly

at 0.15 mm h21 intervals, multiplied by the intensity to represent

the fractional contribution in percent of each intensity range to the

total precipitation. The intensities are displayed on a logarithmic

scale (which distorts areas) to show the contribution of the largest

intensities more clearly.

TABLE 1. Percentile values of the tropical precipitation in-

tensity (mm h21) distribution from TMPA at different spatial

resolutions (0.258, 1.08, and 2.58) with (10) and without (20) zero

values included.

Percentiles 0.258 18 avg 20 2.58 avg 20 18 avg 10 2.58 avg 10

10 0.08 0.074 0.085 0.009 0.003

20 0.23 0.193 0.221 0.031 0.01

30 0.43 0.345 0.38 0.063 0.023

40 0.66 0.515 0.552 0.114 0.046

50 0.90 0.702 0.738 0.197 0.086

60 1.20 0.923 0.958 0.331 0.154

70 1.61 1.216 1.243 0.554 0.273

80 2.29 1.65 1.646 0.954 0.495

90 3.61 2.509 2.37 1.816 0.994

95 5.25 3.549 3.165 2.842 1.599

99 11.50 6.731 5.312 5.921 3.268
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to the TMPA data for 1998–2008. WS12 clearly domi-

nates the large extreme portion of the tropical pre-

cipitation intensity distribution with a peak contribution

at about 2 mm h21 that is nearly double the intensity at

the peak for WS3. WS2 actually exhibits an intensity

distribution similar to that for WS3 (not shown). For

completeness, we also show in Fig. 4 the combined

precipitation intensity distribution for the three sup-

pressed weather states,WS4 throughWS6, calledWS4–6.

Although these states are the ‘‘non-deep-convective’’

states that are mixtures of cirrus, some optically thin

middle-level clouds, and shallow boundary layer convec-

tion that dominate the light precipitation part of the dis-

tribution, there are still occasional heavier (.1 mm h21)

precipitation eventsmixed in (remember that theweather

state classification is a statistical resemblance classifi-

cation). In fact, Lee et al. (2013) show that all of the WS

exhibit larger precipitation intensities if they are pre-

ceded or followed by WS1 within 3–6 h. In other words,

the heavier events in the WS4–6 distribution are closely

associated with WS1 events.

Our key result is that WS12 totally dominates the

precipitation intensity distribution (Fig. 4) at values

.2 mm h21, whereas smaller-scale, ordinary deep con-

vection is only an important contribution (comparable

to WS4–6) at values ,2 mm h21. In other words, the

large extreme part of the precipitation intensity distri-

bution is associated with a completely different type of

deep convection than the type of deep convection that

contributes to the middle range of the intensity distri-

bution. Table 3 emphasizes this conclusion by showing

the intensity percentiles for the weather states: fully half

of theWS1 systems have precipitation intensities greater

than almost all WS3 systems (only about 10% of WS3

systems exhibit intensities .2 mm h21). Even WS2 ex-

hibits intensities comparable to WS3. Only about 20%

of the suppressed, non-deep-convective events exhibit

precipitation intensities.1 mm h21. The disparity is less

dramatic when the average accumulation rate (mm h21)

is calculated (Fig. 5): the WS1 peak rate is only about

twice that ofWS3 because the frequency of occurrence of

WS3 ismuch larger than that ofWS1 (cf. Lee et al. 2013).

Nevertheless, WS12 contributes all of the precipi-

tation when the average daily accumulation rate is

.2 mm day21 (Table 4).

FIG. 3. Distribution of precipitation intensities (mm h21) from

the original TMPA (3 h, 0.258) and the daily average distributions

with (10) and without (20) zero values included. The vertical axis

shows the frequency of occurrence of each value, binned uniformly

at 0.15 mm h21 intervals and multiplied by the intensity to repre-

sent the fractional contribution in percent of each intensity range to

the total precipitation. The intensities are displayed on a loga-

rithmic scale (which distorts areas) to show the contribution of the

largest intensities more clearly.

TABLE 2. Percentile values of the daily average tropical pre-

cipitation accumulation rate (mm day21) distribution at 1.08 from
TMPAwith (10) andwithout (20) zero values and the distribution

from the GPCP-1DD dataset, both from 1998 to 2008.

Percentiles TMPA18 20 TMPA18 10 GPCP 18

10 0.07 0.009 0.07

20 0.247 0.039 0.30

30 0.545 0.102 0.79

40 0.950 0.226 1.69

50 1.545 0.456 3.17

60 2.422 0.873 5.46

70 3.716 1.623 8.87

80 5.690 3.016 13.98

90 9.202 6.000 22.62

95 12.810 9.442 30.84

99 21.789 18.503 48.65

FIG. 4. Distribution of TMPA precipitation intensities (mm h21)

at 3-h intervals averaged to 2.58 and composited for individual

ISCCP weather states. For this plot, WS1 and WS2 are combined

into WS12 and WS4 through WS6 are combined into WS4–6. The

sum of all WS is also shown as WS1–6. The vertical axis shows the

frequency of occurrence of each value, binned uniformly at

0.15 mm h21 intervals and multiplied by the intensity to represent

the fractional contribution in percent of each intensity range to the

total precipitation. The intensities are displayed on a logarithmic

scale (which distorts areas) to show the contribution of the largest

intensities more clearly.
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To reinforce our interpretation of the differences

between the deep convective WS, we composite results

from the ISCCP CS and CT products that provide the

size and duration distribution of cold cloud objects

containing deep convective clouds (remember that

cloud system sizes are larger than convective cloud sizes

or precipitating cloud sizes). We match each con-

vectively active WS (1, 2, and 3) to the nearest deep

convective cloud object and compile size and duration

distributions. Given the highly skewed shape of the size

distributions, better measures of the size are the distri-

bution percentile values: more than 90% of WS3 sys-

tems are smaller than about 75 km, whereas about 70%

ofWS1 systems are larger than 75 km. The same relative

difference in size can be inferred from the frequency of

convective clouds in theWS1 andWS3 patterns in Fig. 1.

The average duration of the average-sized WS1 (about

125 km radius) is about 6–9 h (cf. Machado et al. 1998),

but 90% of all systems with durations .12 h are WS1

systems. Limitations on tracking with the ISCCP dataset

exclude most of the WS3 cases, meaning that they have

durations ,6 h.

What we have shown is that the distribution of pre-

cipitation intensity is not determined by precipitation as

a single type of phenomenon with a range of values but

rather comprises the separate distributions of at least

two distinct types of deep convection (with the collec-

tion of ‘‘non-deep-convective’’ or shallow convection

types contributing most to the smaller intensities). The

clear implication is that changes in the distribution of

precipitation intensity as part of climate change cannot

be considered as a single process—simply a shift of (all)

precipitation intensities. The simple alternative be-

tween deep convective and non-deep-convective states

is usually thought of as a local thermodynamic issue in-

volving the static stability of the atmosphere, but the re-

lationship among the different types of deep convection

is clearly dynamical as suggested by the ‘‘switching’’

behavior documented in MJO events (Tromeur and

Rossow 2010) and in the initiation and evolution of

African easterly waves (AEWs; Mekonnen and Rossow

2011).

Climate model studies already show that the extreme

range of precipitation intensity does not scale like the

changes of water vapor abundance, as would be the case

if moisture convergence depended only on water vapor

abundance (e.g., Emori and Brown 2005; Held and

Soden 2006).At the least, the feedback of changing latent

heating has to have dynamical consequences. However,

all of the climate GCMs currently parameterize tropical

deep convection as a single process, localized to individual

TABLE 3. Percentile values of the tropical precipitation intensity

(mm h21) distributions from TMPA matched to ISCCP weather

states at 3-h, 2.58 intervals. The first column gives the full resolution

TMPA distribution percentiles.

Percentiles 2.58avg 20 WS1 WS2 WS3 WS4–6

10 0.085 0.639 0.175 0.135 0.044

20 0.221 0.946 0.340 0.287 0.107

30 0.380 1.204 0.490 0.439 0.202

40 0.552 1.447 0.640 0.595 0.320

50 0.738 1.698 0.798 0.761 0.453

60 0.958 1.975 0.98 0.948 0.607

70 1.243 2.316 1.206 1.176 0.792

80 1.646 2.782 1.515 1.484 1.053

90 2.370 3.603 2.050 2.022 1.538

95 3.165 4.469 2.651 2.626 2.097

99 5.312 6.651 4.408 4.369 3.796

FIG. 5. Distribution of TMPA average daily precipitation accu-

mulation rates (mm day21) averaged to 2.58 and composited for

individual ISCCP weather states. For this plot, WS1 and WS2 are

combined into WS12 and WS4 through WS6 are combined into

WS4–6. The sum of all WS is also shown as WS1–6. The vertical

axis shows the frequency of occurrence of each value, binned

uniformly at 0.15 mm day21 intervals and multiplied by the in-

tensity to represent the fractional contribution in percent of each

intensity range to the total precipitation. The intensities are dis-

played on a logarithmic scale (which distorts areas) to show the

contribution of the largest intensities more clearly.

TABLE 4. Percentile values for the daily average tropical pre-

cipitation accumulation rate (mm day21) distributions from TMPA

matched to ISCCP weather states at 2.58 intervals.

Percentiles WS1 WS2 WS3 WS456

10 0.148 0.008 0.005 0.001

20 0.317 0.023 0.015 0.004

30 0.491 0.049 0.032 0.008

40 0.676 0.086 0.058 0.015

50 0.879 0.137 0.097 0.026

60 1.115 0.208 0.154 0.045

70 1.414 0.309 0.237 0.078

80 1.827 0.461 0.368 0.138

90 2.544 0.744 0.617 0.279

95 3.292 1.051 0.891 0.468

99 5.227 1.874 1.628 1.100
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grid cells (on the order of 25–200 km in size) with short

lifetimes (on the order of minutes to a few hours) that

most resembles ordinary cumulonimbus (i.e., WS3). As

mentioned before, most of these climate models have

‘‘extreme’’ precipitation intensities that are much more

characteristic of WS3 (Stephens et al. 2010). In other

words, these models do not have anything equivalent to

the mesoscale-organized type of deep convection, WS12,

and so are not capable of switching from ordinary deep

convection to mesoscale-organized deep convection in

response to the larger-scale circulation. Wilcox and

Donner (2007) show that, in one model at least, intro-

ducing a parameterization that tries to represent me-

soscale convection makes a much larger difference to

the model behavior than global warming does. Since it is

the mesoscale deep convective systems that dominate the

extreme portion of both the precipitation intensity and

accumulation distributions, the changes of precipitation

extremes in these models cannot be realistic.

The observed distinctive behavior of the different

deep convective storm types undercuts the simple pro-

jection of changes of extremes based on the large-scale

balances or by a simple scaling. These results draw at-

tention to the need to understand why different deep

convective storm types exist, how they interact with each

other and with the larger-scale circulation, and what role

they each play in the atmospheric general circulation.

Until the full range of deep convective processes in the

tropics is more realistically represented in climate

models, they cannot be used to predict the changes of

extreme precipitation events in a changing (warming)

climate.
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