


Abstract—Systems engineers use SysML as a vendor-

independent language to model Cyber-Physical Systems.

However, SysML does not provide an executable form to define

behavior but this is needed to detect critical issues as soon as

possible. Alf integrated with SysML can offer some degree of

precision. In this paper, we present an Action Language for

Foundational UML (Alf) specialization that introduces the

synchronous-reactive Model of Computation to SysML, through

definition of not explicitly constrained semantics: timing,

concurrency, and inter-object communication. The Smart

Parking system, a well-known cyber-physical system, was

selected to evaluate this specialization. Our initial results show

that the proposed specialization does not add complexity to the

task of modeling using SysML, and enables concise and precise

behavioral definitions.

Index Terms— Alf, CPS, Cyber-Physical Systems, MDA,

synchronous-reactive, MoC, system modeling, SysML.

I. INTRODUCTION

YBER-Physical Systems (CPSs) are an integration of

computational and physical processes. Embedded

computers and networks monitor and control physical

processes with feedback loops where physical processes affect

computations and vice versa [15].

According to Cartwright et. al. [8], the difficulty in

modeling CPSs comes from the diversity of these systems;

therefore, the most promising approach to mitigate this

problem is to develop expressive and precise modeling

languages.

As a result, a large number of languages and formalisms

have been proposed to model CPSs [7]. One particular subset

of these languages has been established as a technology of

choice form specifying, modeling, and verifying real-time

embedded applications [3]. This subset is called synchronous

languages because it follows the synchronous-reactive Model

of Computation (MoC) [15].

This work was supported by the Brazil’s Coordination for Enhancement of

Higher Education Personnel (CAPES) and German Academic Exchange
Service (DAAD).

Synchronous-reactive MoC provides precise behavioural

representation using the fundamental model of time as a

sequence of discrete instants, computation and communication

executed in zero-time, and parallel composition as a

conjunction of behaviors [3]. There is a solid mathematical

foundation that supports synchronous-reactive MoC, which

support formal analysis and verification. Languages based on

this MoC, like Esterel [5], have been developed and used for

safety-critical systems [3][24]. Some of them, like Quartz

[26], have been extended for CPSs [1] through introduction of

mechanisms to deal with continuous time.

Comparing a system described in the synchronous-reactive

MoC against an asynchronous system for dual redundant flight

guidance system, Miller et al [17] made the following

observation: “the properties themselves are more difficult to

state, were weaker than could be achieved in the synchronous

case, and required considerable complexity to be added to the

model to ensure that even the weakened properties were true”.

Meanwhile, the Object Management Group (OMG) and the

International Council on Systems Engineering (INCOSE) are

developing the Systems Modeling Language (SysML) [22]; a

general-purpose modeling language for systems engineering

applications based on the Unified Modeling Language (UML)

[20]. SysML has demonstrated a capability for top-down

design refinement, but the lack of formal foundations in the

SysML results in imprecise behavioural models.

In this paper, we present a specialization to the Action

Language for Foundational UML (Alf) [23] for behavioural

modeling of CPSs. The hypothesis of this work is that a

specialization of Alf according to the synchronous-reactive

MoC can be sufficiently expressive to model the discrete

behavior of CPSs using SysML. Consequently, adhering to the

synchronous-reactive MoC, we will benefit from a solid

mathematical foundation [3][5][26].

The remainder of this paper is organized as follows: in

Section II, related works are explored briefly; in Section III,

present the initial approach; in Section IV, a case study is

presented; in Section V, we briefly discuss the initial approach

and the case study; finally, conclusions are shared in the last

section.

Synchronous Specialization of Alf for Cyber-

Physical Systems

C

Alessandro Gerlinger Romero
Brazilian National Institute for

Space Research, Avenida dos

Astrounautas, 1758, 12227-010,

São José dos Campos, São Paulo,

Brazil.

Email: romgerale@yahoo.com.br

Klaus Schneider
University of Kaiserslautern

Computer Science Department, Po

box 3049, 67653, Kaiserslautern,

Germany.

Email: klaus.schneider@cs.uni-

kl.de

Maurício Gonçalves Vieira

Ferreira
Brazilian National Institute for

Space Research, Avenida dos

Astrounautas, 1758, 12227-010,

São José dos Campos, São Paulo,

Brazil.

Email: mauricio@ccs.inpe.br

Email: romgerale@yahoo.com.br

II. RELATED WORKS

There are a large number of research papers about how to

formalize semantics for models defined using UML, and

consequently, SysML. Hußmann [13] proposes the following

classification for approaches concerning structural semantics:

(a) naive set-theory, (b) metamodeling, and (c) translation.

This classification can be used for the works focused on

behavioural semantics.

Extending (a) naive set-theory, Graves and Bijan [12]

propose one approach where behavior defined using SysML

State Machine Diagrams is represented as a set of axioms

using type theory.

Alf [23], and the foundational subset for executable UML

models (fUML) [21], follows the approach (b) metamodeling

because the semantics of behavior is described operationally

using fUML itself. The circularity is broken by the base

semantics of fUML, which is specified in first order logic (a –

naive set-theory).

Following (c) translation, Bousse et. al. [6] define a method

to transform a subset of SysML in B method representations;

the selected subset of SysML covers behavioural definitions

expressed by Alf. Afterwards, the B method representation is

proved by a specialized tool. Abdelhalim et. al. [1] define a

method that receiving State Machine Diagrams and Activity

Diagrams (according to fUML) applies a transformation to

Communicating Sequential Process (CSP) MoC. Afterwards,

the CSP representation is verified by a specialized tool.

Benyahia et. al. [4] show that fUML, and also Alf, is not

directly feasible to safety-critical systems because the MoC

defined in the fUML execution model (as it is) is

nondeterministic and sequential.

III. INITIAL APPROACH

Execution and verification of models is the cornerstone of any

Model-Driven Development (MDD). One prominent

alternative for MDD is Model-Driven Architecture (MDA)

established by OMG [19].

MDA defines three levels of abstraction: (A) Computational

Independent Model (CIM) – focuses on the environment of the

mission and mission’s requirements; (B) Platform Independent

Model (PIM) – defines requirements, structure, and behavior

for candidate abstract solutions; (C) PSM (Platform

Specification Model) – describes concrete solutions. MDA

effort established a large number of specifications but for this

paper the most important is the Alf [23].

 Alf is the concrete syntax for the abstract action language

defined by fUML [21], a subset of UML [20]; the execution

semantics for Alf is given by fUML. According to INCOSE

[14], fUML and Alf are MDA pillars for the definition of

PIMs.

fUML [21], which defines the semantics for Alf, is designed

to support more than one MoC; this is pursued with leaving

some semantics elements unconstrained. These elements

define aspects of concurrency and inter-object communication

which work for simulation, whereas they are not suitable for

formal verification. fUML does not define semantics for: (A)

timing, (B) concurrency and (C) inter-object communication.

Our initial approach is: given the semantics defined by

fUML to specialize it fulfilling the explicitly unconstrained

elements with the purpose of precise definition of models

using Alf. In order to do this, we discuss proposed changes in

the semantics of the fUML. Further, we chose to discuss the

semantics in an informal way, and to present a concrete

additional language construct for the specialization of the Alf.

This additional language construct is defined using

Annotation; according to Alf abstract syntax [23]; it is a way

to identify a modification to the behavior of an annotated

statement. The applied approach allows us early verification of

the proposed specialization.

A. Timing

The timing semantics used divides the time scale in a discrete

succession of instants; each instant corresponds to one macro-

step as defined in the next subsection.

B. Concurrency

Concurrency can be achieved using Alf using two

complementing techniques: (A) multiples active objects that,

in general, implies the necessity of inter-object

communication; or, (B) inside a given definition the use of the

annotation @parallel.

Active objects are the source of all behaviors, in a system

modeled with UML [19], SysML, fUML, and Alf. An active

object is an instance of an active class. An active class must

have a ClassifierBehavior that defines the class behavior. Each

active object is executed independently, and the only way to

communicate with other active objects is through signals [20].

One alternative to provide a combination of concurrency

and synchrony (where computation and communication are

instantaneous) is by using the synchronous-reactive MoC.

According to this MoC, a program can be defined by so-called

micro and macro steps. Each macro-step is divided into

finitely many micro steps, which are all executed in zero time

and within the same variable environment (i.e., the ordering of

micro steps does not influence the semantics of a model). As a

consequence, the values of the variables are uniquely defined

for each macro step. Macro steps correspond to reactions of

reactive systems, while micro steps correspond with atomic

actions, e.g., assignments of the model that implements these

reactions [26].

The demarcation of macro steps was introduced by the

annotation @pausable; it is one of two ways to define

demarcation between two macro steps. The second way is the

use of accept statement from Alf. This annotation is designed

to be used with loop constructs (while, for, do while), and the

semantics is: after each execution of the loop body, it waits for

the next macro step. It follows that all concurrent behaviors

run in lockstep: they execute the actions inside the loop in zero

time, and synchronize before next iteration.

The annotation @parallel can be used to define that all the

statements in the block are executed concurrently. The block

does not complete execution until all statements complete

their execution; i.e., there is an implicit join of the concurrent

executions of the statements [23].

C. Inter-Object Communication

Inter-object communication in the Alf is performed sending

signals (SendSignalAction) to other active object [21]; further,

this action is not blocking, i.e., an object sends a signal and

continues its execution, it does not wait for a response, or an

acknowledgment. A signal is a specification of what can be

carried; furthermore, a signal event represents the receipt of a

signal instance in an active object [21].

Signals are based on the paradigm of message passing;

furthermore, fUML provides a point-to-point (also known as

unicast) message pattern [21]. A signal is sent to a receiver

(active object) using a reference to it. In contrast, multicasting

is required in many safety-critical systems, e.g., fault-tolerance

by active redundancy [18]. Multicasting also supports the non-

intrusive observation of component interactions by an

independent object. Moreover, it enables a better composition.

Multicasting was introduced by an active class called

MessageDispatcher; it provides the service for multicast

message exchange. Instances of this class work as a Bus

transferring instances of signals between previous registered

active objects, which generate events in the target active

object.

Every signal handled by MessageDispatcher has a specific

identifiable sender, and zero or more receivers. The set of

active objects (receivers) is defined by existence of the

reception for that signal. All signals generated in current

macro-step are available instantaneously. Moreover, signals

not used during a macro step are lost. It is possible to receive

signals individually or as a set. Receiving a set of signals is

important for those active objects that need to process all

signals sent for it in current macro-step.

IV. CASE STUDY

A case study was developed to evaluate our initial approach.

Points discussed above were applied to model part of a system

called Smart Parking. The SmartParking has chosen for three

respective reasons: (1.) it is a real-world Cyber-Physical

System; (2.) it can be modeled as a discrete system [11]; (3.)

Geng and Cassandras [11] provide a well-detailed concrete

solution.

In accordance with [10][25], the case study is defined using

MDA. The case study focus on aspects related to computation

and communication in the PIM abstraction level, one option to

cover control aspect is presented in [11].

A. Mission Context and Requirements

Mission context and mission requirements were gathered and

modeled in a SysML CIM Model. The mission is summarized

below.

A user, inside a vehicle, shall be able to request a parking

space. The request for a parking space shall be evaluated

considering two constraints gave by user: (a) maximum

distance from current position, and (b) maximum cost that

user wants to pay.

The user shall receive a response indicating the best parking

space that satisfies the imposed constraints. The user shall be

able to accept, or reject this response.

The user shall be informed about where is the parking space

reserved for him, as well as, about the availability of all the

parking spaces up to 10 meters from his current position.

The vehicle shall be able to send them current position. The

vehicle shall be detected when it arrives at a parking space,

and when it departures from a parking space.

B. An Abstract Solution for the Mission

Fig. 1 shows the BDD for an abstract solution, which is

compatible with the concrete solution defined in [11]. The

SmartParking system was decomposed in three main parts:

SmartParkingEnablerDevice, SmartParkingAllocationCenter,

and Spot; all of them are active classes.

The connections between these elements are not static;

therefore, they are not presented in the Fig. 1 as associations.

The connections are showed in the Internal Block Diagram

(IBD) presented in Fig. 2. In contrast to associations, which

specify links between any instances of the associated

classifiers, connectors specify links between instances playing

the connected parts only [20]. The inter-object communication

is provided by the multicast message exchange service

(MessageDispatcher); further, each active object has a

reference to the same instance of MessageDispatcher.

SmartParkingEnablerDevice models a device inside the

vehicle. It receives Position from vehicle, and has a

UserInterface (both interactions with the environment

depicted left-up corner in the Fig. 2.). Each Vehicle has a

corresponding SmartParkingEnablerDevice active object. The

abstraction used in this case-study makes internal structure of

this component irrelevant. It, as well as other components,

could be modeled later as software, hardware or a composition

of both; e.g., SmartParkingEnablerDevice could be

implemented as software in a smartphone [11].

Each parking space managed by the system is an active

object Spot. Each Spot has two interactions with the

environment; (a) detecting that a vehicle arrived at a Spot

(VehiclePresenceSensor); and, (b) indicating for a user what is

the current state of the Spot, and which one is reserved for him

Fig. 1. BBD System components (PIM level).

(LightsActuator).

Spot and SmartParkingEnablerDevice (plant) are managed

by the block SmartParkingAllocationCenter (controller). In

this case study, there is only one active object from this block,

which in each macro step is responsible for: (a) gathering

system state, and events; and, (b) determining the control

output.

From the viewpoint of Discrete Event Systems (DES)

control, considering signals handled by

SmartParkingAllocationCenter, the system can be described

as follows:

 () () () (1)

 (2)

 (3)

 (4)

 (5)

 () (() () ()) (6)

where:

(1) defines the discrete state space X(t) - composed by D(t) =

{k Natural: SmartParkingEnablerDevice k in the system}

determined in each macro step by signal events of the signal

DeviceStateSP; and, P(t) = {k Natural: Spot k in the

system} determined in each macro step by signal events of the

signal SpotStateSP;

(2) is the discrete event set, which is composed by signals: (3)

received from SmartParkingEnablerDevice; (4) sent to

SmartParkingEnablerDevice; and, (5) sent to Spot;

(6) defines the evolution of the system over time, which is the

state X in the next macro step (t + 1) is defined by the state,

events and control in the current macro step (t); X(t) defines

the state in the instant t; U(t) = {k Natural, i ED or i

ESpot: instance ik } the set of control signals determined in

each instant t by instances of the signals defined in the sets ED

and ESpot; and, W(t) = {k Natural, i ECent: instance ik }

the set of signals (events) determined in each intant t by

instances of signals defined in the set ESpot.

Fig. 3. shows that the Alf ClassifierBehavior of the

SmartParkingEnablerDevice has two concurrent infinite

loops.

The first infinite loop depicted in Fig. 3. is annotated with

@pausable, which means that it sends the current state of

device; afterwards, it waits for the next macro step

(synchronization point, before next iteration) . The current

state is composed by the actual position and state of current

reservation, and is represented by an instance of the signal

DeviceStateSP. Each active object sends this signal in each

macro step using an instance of MessageDispatcher that is

responsible for delivery copy of these messages to every

registered active object that has a reception for this signal.

The second infinite loop defines the expected reactions of

the device for events received from UserInterface and from

SmartParkingAllocationCenter. It starts with an accept

statement, which blocks execution (possible during many

macro steps) until that the expected event occurs. Afterwards,

it uses the same mechanisms described above to send signals

for other active objects. Moreover, it uses a compound accept

statements that determines which block will be activated based

on the type of the signal received from UserInterface and from

SmartParkingAllocationCenter.

SmartParkingAllocationCenter behavior is showed in the

Fig. 4. It has an infinite loop annotated with @pausable that

defines a synchronization point in the end of each execution of

the loop body. The loop body starts with five concurrent

accept statements, which means that it waits until no more

signals of these types can be generated; afterwards, it applies

Fig. 3. Alf ClassifierBehavior of SmartParkingEnablerDevice.

Fig. 2. IBD System abstract solution (PIM level).

the control law, and send the response for other active objects

(SmartParkingEnablerDevice and Spots) using the mechanism

described above.

The Alf ClassifierBehavior of the Spot has the same

organization that SmartParkingEnablerDevice. There are two

concurrent infinite loops: one sending signals about its state

(with synchronization point defined using @pausable), and,

one to define reactions for the received events from received

from VehiclePresenceSensor and from

SmartParkingAllocationCenter.

V. DISCUSSION

The case study defines one abstract solution (PIM) for the

mission that was modeled to explore: concurrency,

synchronization, and multicast messages. The solution is

neither complete nor optimized, e.g., signals can be removed

by a centralized version of the state of the system. A tradeoff

could be evaluated taking into account an objective function

defined at CIM level, e.g., considering the analysis of the

messages (communication) during macro steps. In addition,

the abstract solution has an important difference compared to

the solution presented in [11]: there are no queues. This is a

consequence of the synchronous-reactive MoC; all signals are

received and processed in the same macro step. The

SmartParkingEnablerDevice does not have the state “Waiting

for Assignment” [11] because, given a macro step, the system

state is gathered instantaneously; afterwards, the control law is

applied; and, all active objects in SmartParking immediately

receive an adequate response.

From the viewpoint of DES control [9], the case study

satisfies the cornerstone properties: (a) its state space is a

discrete set, as defined in (1); and, (b) the state transition

mechanism is event-driven, which means that the state can

only change as a result of asynchronously occurring

instantaneous events over time [9]. Apart from that, the second

property has a time window to occur during a macro step. In

the case study, it is mandatory that many events occur in the

same macro step, and the resulting state transition reflects the

occurrence of all. However, some combinations of signals in

the same macro step is not allowed, e.g., if a naive device

sends in a given macro step one signal for request a spot, and

one signal for acceptance, the last one will be lost.

Concerning modeling, StateMachines and State Machine

Diagrams are commonly used for modeling state-dependent

behavior. A variation of these diagrams is used to express

state-dependent behavior in [11]. However, UML, fUML,

SysML, and Alf do not define precise semantics for state

machines. This is ratified by Alf specification itself, which

states that a normative semantic integration of state machines

with Alf will be formalized later as a part of future standards

[23]. Indeed, environments of synchronous languages offer

tools to visualize the resulting automata [5], e.g. the Fig. 3.

can be automatic transformed in a StateMachine Diagram.

The nondeterminism in the fUML MoC, which was

recognized by Benyahia et. al. [4], can be removed using the

proposed specialization. In fact, the proposed specialization

adheres the idea of introducing synchronous-reactive MoC

during early stages of a system development [3]. It avoids

asynchronous complexity in early stages of system modeling,

analyzing, and verification. Furthermore, the synchronous-

reactive MoC enables abstract solutions to be synthetized [24]

in a concrete solution using Globally Asynchronous Locally

Synchronous architecture (GALS) [17], or Physically

Asynchronous Locally Synchronous (PALS) [16]. The initial

approach presented here provides more a starting point than a

complete result. It defines informally the semantics for two

complementary constructs for Alf that together can transform

Alf in a synchronous action language; however, it must be

defined the changes needed in the fUML execution model to

support it, and addressed the points about nondeterminism

stated in [4].

CPS is about the intersection of the computation,

communication, and control [15]. The initial approach focuses

on the computational and communicational aspects of CPSs,

and it can be composed with control. The case study shows

that our initial approach can transfer solid mathematical

foundation from synchronous languages to SysML executable

models. We consider this step, as an intermediary step, before

a formal verification of executable discrete SysML models.

VI. CONCLUSIONS

This paper shows the initial results of our research that has the

following basic hypothesis: a specialization of Alf according

to synchronous-reactive MoC can be sufficiently expressive to

model the discrete behavior of CPSs systems using SysML.

These results show that the proposed specialization does not

add complexity to the task of modeling using SysML, and

enables concise and precise behavior definition.

Fig. 4. Alf ClassifierBehavior of SmartParkingAllocationCenter.

We believe that specializing well-known vendor-

independent specifications (Alf and SysML) can provide an

understandable set of languages for modeling, analyzing and

verification of CPSs. Moreover, such a set of languages can

enable formal verification for discrete parts of CPSs.

REFERENCES

[1] Abdelhalim, I.; Schneider, S.; Treharne, H. (2012). An Optimization

Approach for Effective Formalized fUML Model Checking. In Proc.

SEFM2012 Proceeding of the 10th International Conference on Software
Engineering and Formal methods, 2012, pg. 248-262.

[2] Bauer, K. (2012). A New Modelling Language for Cyber-physical

Systems. PhD thesis, Department of Computer Science, University of
Kaiserslautern, Germany, Kaiserslautern, Germany, January 2012.

[3] Benveniste, A.; Caspi, P.; Edwards, S.; Halbwachs, N.; Guernic, P.;

Simone, R. (2003). The synchronous languages twelve years later.
Proceedings of the IEEE, 91(1):64–83, 2003.

[4] Benyahia, A.;Cuccuru, A.; Taha, S.; Terrier, F.; Boulanger, F.; Gérard,

S. (2010). Extending the Standard Execution Model of UML for Real-
Time Systems. In Proc. DIPES/BICC, 2010, pp.43-54.

[5] Berry, G. (2000). The Esterel v5 Language Primer: version:5.91. France.
Available at: <

http://francois.touchard.perso.esil.univmed.fr/3/esterel/primer.pdf>.

Access date: 14.Apr.2013.
[6] Bousse, E.; Mentré, D. Combemale, B.; Baudry, B.; Katsuragi, T. (2012)

Aligning SysML with the B Method to Provide V&V for Systems

Engineering. Proc. Of 12th Model-Driven Engineering, Verification, and
Validation 2012.

[7] Carloni, L.; Benedetto, D.; Passerone, R.; Pinto, A.; Sangiovanni-

Vincentelli, A. (2004). Modeling Techniques, Programming Languages
and Design Toolsets for Hybrid Systems. Project IST-2001-38314

COLUMBUS. Design of Embedded Controllers for Safety Critical

Systems. WPHS: Hybrid System Modeling.
[8] Cartwright, R.; Kelly, K.; Koushanfar, F.; Taha, W. (2006). Model-

Centric Cyber-Physical Computing. In proceedings … NSF Workshop

on Cyber-Physical Systems, 2006, Austin, Texas: USA.
[9] Cassandras, C.; Lafortune, S. (2010). Introduction to Discrete Event

Systems. Second Edition, Springer Science+Business Media, New

Yourk, 2010.
[10] Cloutier, R. (2006) MDA for systems engineering – Why should we

care? USA. Available at:

<http://www.calimar.com/Papers/Model%20Driven%20Architecture%2
0for%20SE-Why%20Care.pdf>. Access date: 25.Jun.2010.

[11] Geng, Y.; Cassandras, C. (2011). “A New “Smart Parking” System

Based on Optimal Resource Allocation and Reservations”, Proc. of 14th
IEEE Intelligent Transportation Systems Conf., pp. 979-984, Nov. 2011.

[12] Graves, H.; Bijan, Y. (2011). Using formal methods with SysML in

aerospace design and engineering. Journal Annals of Mathematics and

Artifical Intelligence. Volume 63, Issue1, September, 2011. pg 53-102.

[13] Hußmann, H. (2002). Loose semantics for UML, OCL, in: Proceedings

6th World Conference on Integrated Design and Process Technology,
IDPT 2002, June, Society for Design and Process Science, 2002.

[14] International Council on Systems Engineering (INCOSE). (2008).

Survey of Model-Based Systems Engineering (MBSE) methodologies.
USA: INCOSE, Seattle, 2008. 80 p. Available at:

<http://www.incose.org/productspubs/pdf/techdata/MTTC/MBSE_Meth

odology_Survey_2008-0610_RevB-JAE2.pdf>. Access date: 25 jun.
2010.

[15] Lee, E.; Seshia, S. (2011). Introduction to Embedded Systems - A

Cyber-Physical Systems Approach. http://leeseshia.org/, 2011. ISBN
978-0-557-70857-4.

[16] Meseguer, J.; Ölveczky, C. (2010). Formalization and Correctness of the

PALS Architectural Pattern for Distributed Real-Time Systems. Formal
Methods and Software Engineering. Lecture Notes in Computer Science,

2010, Volume 00206447/2010, 303-320, DOI: 10.1007/978-3-642-

16901-4_21.
[17] Miller, P.; Whalen, M.; Obrien, D.; Heimdahl, M.; Joshi, A. (2005). A

methodology for the design and verification of globally

asynchronous/locally synchronous architectures. NASA Contractor
Report NASA/CR-2005-213912.

[18] Obermaisser, R.; Kopetz, H. (2009). Genesys – A candidate for an
ARTEMIS Cross-Domain Reference Architecture for Embedded

Systems. 2009. Available at: <http://www.genesys-

platform.eu/genesys_book.pdf> Access date: 17.May.2011.

[19] Object Management Group (OMG). (2003). Model-Driven Architecture.

USA: OMG, 2003. Available at: <http://www.omg.org/mda>. Acesso

em: 17 may. 2009.
[20] Object Management Group (OMG). (2011). Unified Modeling Language

Superstructure: Version: 2.4.1. USA: OMG, 2011. Available at:

<http://www.omg.org/spec/UML/2.4.1/>. Access date: 14.Apr.2013.
[21] Object Management Group (OMG). (2012). Semantics of a

Foundational Subset for Executable UML Models: Version 1.1 RTF

Beta. USA: OMG, 2012. Available at:
<http://www.omg.org/spec/FUML/>. Access date: 24.Apr.2013.

[22] Object Management Group (OMG). (2012). Systems Modeling

Language: Version: 1.3. USA: OMG, 2012. Available at: <
http://www.omgsysml.org/>. Access date: 27.Apr.2013.

[23] Object Management Group (OMG). (2013). Concrete Syntax for UML

Action Language (Action Language for Foundational UML - ALF):
Version: 1.0.1 - Beta. USA: OMG, 2013. Available at:

<http://www.omg.org/spec/ALF/>. Access date: 27.Apr.2013.

[24] Potop-Butucaru, D.; Caillaud, B. (2007). Correct-by-Construction
Asynchronous Implementation of Modular Synchronous Specifications.

Journal Fundamenta Informaticae - The Fourth Special Issue on

Applications of Concurrency to System Design (ACSD05) archive
Volume 78 Issue 1, September 2007 Pages 131-159.

[25] Romero, A. G.; Ferreira, M. G. V. (2012). An Approach to Model-

Driven Architecture applied to Hybrid Systems In: SpaceOps 2012,
2012, Stockholm. 12th International Conference on Space Operations.

Stockholm: AIAA, 2012. Available at:
<http://spaceops2012.com/proceedings/documents/id1290620-Paper-

003.pdf>. Access date: 24.Apr.2013.

[26] Schneider, K. (2009). The synchronous programming language Quartz.
Internal Report 375, Department of Computer Science, University of

Kaiserslautern, Kaiserslautern, Germany, December, 2009.

