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We consider an alternative to inflation for the generation of superhorizon perturbations in the Universe

in which the speed of sound is faster than the speed of light. We label such cosmologies, first proposed by

Armendariz-Picon, tachyacoustic, and explicitly construct examples of noncanonical Lagrangians which

have superluminal sound speed, but which are causally self-consistent. Such models possess two horizons,

a Hubble horizon and an acoustic horizon, which have independent dynamics. Even in a decelerating

(noninflationary) background, a nearly scale-invariant spectrum of perturbations can be generated by

quantum perturbations redshifted outside of a shrinking acoustic horizon. The acoustic horizon can be

large or even infinite at early times, solving the cosmological horizon problem without inflation. These

models do not, however, dynamically solve the cosmological flatness problem, which must be imposed as

a boundary condition. Gravitational wave modes, which are produced by quantum fluctuations exiting the

Hubble horizon, are not produced.

DOI: 10.1103/PhysRevD.81.043510 PACS numbers: 98.80.Cq

I. INTRODUCTION: WHY INFLATION WORKS

Inflationary cosmology [1–3] is the most successful and
widely accepted paradigm for understanding the very early
Universe. By all measures inflation is a compelling and
scientifically useful theory, and makes quantitative predic-
tions which have been strongly supported by recent data
[4–6]. The two main hallmarks of inflationary cosmology
are solutions to the flatness and horizon problems of the
standard big bang cosmology: why is the Universe so close
to geometrically flat, and how did the apparent acausal
structure of the Universe arise? ‘‘Acausal’’ more specifi-
cally means that the Universe is approximately homoge-
neous on scales larger than a Hubble length H�1, and in
addition exhibits a spectrum of density perturbations which
is correlated on scales larger than a Hubble length. Such
superhorizon correlations are generated in inflation by
accelerated expansion, €a=a > 0, where aðtÞ is the cosmo-
logical scale factor, which means that the comoving
Hubble length dH ’ ðaHÞ�1 shrinks with the expansion
of the Universe,

d

d lna
ðaHÞ�1 < 0: (1)

Therefore, quantum perturbations, which have constant
wavelength in comoving units, are smaller than the
Hubble length at early times, and are redshifted to larger
than the Hubble length at late times, where they are ‘‘fro-
zen’’ as classical perturbations. Furthermore, as long as the
Hubble constant H is slowly varying with time, the pertur-

bations generated in inflation are nearly scale-invariant,
consistent with observation. Furthermore, the solution to
the horizon problem and the flatness problem are linked in
inflation via a conservation law,

d

d lna

j�� 1j
d2H

¼ 0: (2)

Through this conservation law, a universe with shrinking
comoving horizon size is identical to a universe which is
evolving toward flatness,

d

d lna
j�� 1j< 0: (3)

Inflation therefore solves the horizon and flatness problems
of the standard big bang with a single mechanism: accel-
erated expansion.
However, inflation is not the only way to accomplish this

goal, as can be seen from the fact that the acceleration €a
appears nowhere in the conservation law (2). To solve both
the horizon and flatness problems, it is sufficient to have a
shrinking comoving Hubble length. One way to do this is
accelerated expansion, but another is to have a collapsing
universe, H ¼ ð _a=aÞ< 0. A collapsing, matter- or
radiation-dominated universe also has a shrinking comov-
ing Hubble length, which will generate perturbations in a
manner similar to inflation. This is the mechanism used by
the Ekpyrotic scenario [7] to construct a cosmology con-
sistent with observations. It is also possible to decouple the
horizon and flatness problems, for example, in theories
with a varying speed of light, so that the causal horizon
is much larger than the Hubble length [8]. Such theories
can in principle solve the horizon problem, but not the
flatness problem, since the conservation law (2) is violated.
It is also possible to solve the horizon problem by a
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universe which is much older than a Hubble time as in
string gas cosmology [9] or island cosmology [10,11], or
by the inclusion of extra dimensions [12,13]. However, it
has been argued that inflation and ekpyrosis are the only
mechanisms for generating a scale-invariant spectrum of
perturbations [7,14].

In this paper, we discuss a method of solving the cos-
mological horizon problem and seeding scale-invariant
primordial perturbations in a cosmology with decelerating
expansion and a corresponding growing comoving Hubble
horizon. The key to implementing such a model is the fact
that curvature perturbations are not generated at the
Hubble horizon, but at the acoustic horizon determined
by the speed of sound of a scalar field. For canonical field
theories, the two are identical, but for noncanonical field
theories, they are not. If one has a decaying, superluminal
sound speed, curvature perturbations can be generated out-
side the Hubble horizon without inflation. We propose the
term tachyacoustic for such cosmologies, which are
closely related to varying speed of light theories. This
idea has some history: such cosmologies were first pro-
posed by Armendariz-Picon in the context of modified
dispersion relations [15], and the generation of perturba-
tions in such cosmologies was further considered by Piao
[16]. The idea reemerged in the context of varying speed of
light theories by Magueijo [17], and noncanonical
Lagrangians by Magueijo [18] and Piao [19]. In this paper,
we outline a general approach to such cosmologies based
on the generalization of the inflationary flow formalism
[20] introduced by Bean, et al. for the case of arbitrary
Lagrangians [21]. We find that there is a class of
Lagrangians with the necessary properties for tachyacous-
tic cosmologies, and discuss two interesting examples. We
find that it is straightforward to generate nearly scale-
invariant perturbations for these Lagrangians, and show
that they have the property of reducing to instantonlike
solutions with infinite sound speed on the initial-time
boundary of the spacetime. We speculate that this property
may allow a self-consistent description of tachyacoustic
cosmologies within aWheeler-DeWitt description of quan-
tum cosmology. Finally, we show that such models are
causally self-consistent, and argue that they form a viable
class of alternatives to inflation.

II. TACHYACOUSTIC COSMOLOGY

In this paper, we consider a way of generating scale-
invariant superhorizon cosmological perturbations based
on noncanonical scalar-field Lagrangians with a speed of
sound faster than the speed of light, cS > 1. If the Universe
is dominated by a scalar field with speed of sound cS, the
relevant horizon for the generation of density perturbations
is not the Hubble horizon dH ’ ðaHÞ�1 but the acoustic
horizon,

DH ’ cS
aH

: (4)

Mode freezing at the acoustic horizon is well known in
noncanonical inflation models, for example, k-Inflation
[22] and Dirac-Born-Infeld (DBI) inflation [23]. In non-
canonical inflation models, the Hubble horizon and the
acoustic horizon are both shrinking in comoving units,
resulting in the generation of density perturbations at the
acoustic horizon and gravitational wave perturbations at
the Hubble horizon [24]. However, the comoving Hubble
horizon need not be shrinking to generate curvature per-
turbations: all that is required is that the acoustic horizon
be shrinking, dDH=d lna < 0. In this case, if curvature
perturbations are to be generated on scales larger than the
Hubble horizon, it is necessary that the acoustic horizon be
larger than the Hubble horizon, which requires a speed of
sound greater than the speed of light. Such theories were
studied recently by Babichev et al. [25,26], who showed
that k-essence theories with cS > 1 are causally self-
consistent (see the Appendix), and can be mapped to
bimetric theories with two ‘‘light cones,’’ one given by
the Hubble horizon, and the other given by the acoustic
horizon, which can be larger than the Hubble horizon
without the presence of closed timelike loops. This opens
the possibility that one can construct a decelerating cos-
mology which nonetheless generates perturbations on
super-Hubble scales via a superluminal, shrinking acoustic
cone.
To explicitly construct such a model, consider a DBI

Lagrangian,

L ð�;XÞ ¼ �f�1ð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fð�Þ _�2

q
þ f�1ð�Þ � Vð�Þ;

(5)

where we take the metric to have negative signature ��� ¼
diagð1;�1;�1;�1Þ, so that the kinetic term for the field is
positive,

_� 2 � g��@��@�� > 0: (6)

Such Lagrangians often arise in string theory, for example,
in the case of DBI inflation. For the moment, we will not
attempt to make a connection with string theory, but will
take the Lagrangian (5) as a phenomenological ansatz.
Take the background spacetime to be a flat, Friedmann-
Robertson-Walker (FRW) space, g�� ¼ a2���, so that the

scale factor evolves as

a / exp

�Z
Hdt

�
/ e�N; (7)

where we define the number of e-folds N as1

N � �
Z

Hdt: (8)

There is a class of exact solutions [27,28] to the equation of

1We use the usual convention that N ! 1 corresponds to early
time, and N ! �1 corresponds to late time.
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motion for the field � characterized by two dimensionless
flow parameters � and s, where

� � 1

H

dH

dN
¼ const; (9)

and

s � � 1

cS

dcS
dN

¼ const: (10)

The parameter � has its usual interpretation in terms of the
equation of state of the scalar field,

p ¼ �

�
2

3
�� 1

�
: (11)

For � ¼ const, the scale factor evolves as a power law, a /
t1=�, so that the expansion is accelerating (i.e. inflation) for
� < 1. The speed of sound evolves as

cS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fð�Þ _�2

q
/ e�sN; (12)

and the Hubble parameter evolves as

H ¼ _a

a
/ e�N: (13)

The parameter � is a positive-definite quantity for p � ��,
so that the Hubble constant always decreases with expan-
sion. In contrast, the parameter s can take either sign, with
s > 0 corresponding to a sound speed which increases with
expansion, and s < 0 corresponding to an decreasing
sound speed. (See Ref. [28] for a detailed derivation of
this solution.) The important dynamics for the generation
of perturbations is the time evolution of the corresponding
horizons in comoving units. The comoving Hubble horizon
evolves as

dH / ðaHÞ�1 / eð1��ÞN / �; (14)

where � is the conformal time. The Hubble horizon is
shrinking in comoving units for � < 1, which is identical
to accelerated expansion, and is the usual condition for
inflation. The acoustic horizon behaves as

DH / cS
aH

/ eð1���sÞN / �ð1���sÞ=ð1��Þ: (15)

Therefore the condition for a shrinking acoustic horizon,
1� �� s > 0, is not identical to accelerated expansion.
For � > 1 and s < 1� �, the expansion is noninflationary,
the Hubble horizon is growing in comoving units, and the
acoustic horizon is shrinking. The initial singularity is at
� ¼ 0, and we see immediately that for the tachyacoustic
solution, the speed of sound in the scalar field is infinite at
the initial singularity, and the acoustic horizon is likewise
infinite in size. Therefore, such a cosmology presents no
‘‘horizon problem’’ in the usual sense, since even a spa-
tially infinite spacetime is causally connected on the initial-
time boundary. Furthermore, unlike in the case of inflation,
there is no period of reheating necessary, since the cosmo-

logical evolution can be radiation-dominated throughout
and the cosmic temperature is not driven exponentially to
zero.
In the next section, we use the generalized flow function

approach of Bean, et al. [21] to construct a class of
Lagrangians with solutions of the type outlined above,
with constant flow parameters. In these solutions, the scale
factor evolves as a power law in time and the equation of
motion for curvature perturbations can be solved exactly,
which we discuss in Sec. VI.

III. FLOW HIERARCHY FOR GENERAL
K-ESSENCE MODELS

We now generalize the discussion in the last section to
an arbitrary k-essence model. Consider a general
Lagrangian of the form L ¼ L½X;��, where 2X ¼
g��@��@�� is the canonical kinetic term (X > 0 accord-

ing to our choice of the metric signature). The energy
density � and pressure p are given by

p ¼ LðX;�Þ; (16)

� ¼ 2XLX �L: (17)

The speed of sound is given by

c2S �
pX

�X

¼
�
1þ 2X

LXX

LX

��1
; (18)

where the subscript ‘‘X’’ indicates a derivative with respect
to the kinetic term. Throughout this section, unless other-
wise stated, we will follow closely Bean et al. [21]. We
define the first three flow parameters as derivatives with
respect to the number of e-folds, dN ¼ �Hdt2:

� � 1

H

dH

dN
; (19)

s � � 1

cS

dcS
dN

; (20)

~s � 1

LX

dLX

dN
: (21)

The Friedmann equation can be written in terms of the

reduced Planck mass MP ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
8�G

p

H2 ¼ 1

3M2
P

� ¼ 1

3M2
P

ð2XLX �LÞ; (22)

and the continuity equation is

_� ¼ 2H _H ¼ �3Hð�þ pÞ ¼ �6HXLX: (23)

For monotonic field evolution, the field value � can be
used as a ‘‘clock,’’ and all other quantities expressed as

2The parameters s and ~s correspond to the parameters 	 and ~	
in Bean, et al. [21].
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functions of �, for example X ¼ Xð�Þ, L ¼ L½Xð�Þ; ��,
and so on. We consider the homogeneous case, so that _� ¼ffiffiffiffiffiffi
2X

p
. Using

d

dt
¼ _�

d

d�
¼ ffiffiffiffiffiffi

2X
p d

d�
; (24)

we can rewrite the Friedmann and continuity equations as
the Hamilton-Jacobi equations,

_� ¼ ffiffiffiffiffiffi
2X

p ¼ � 2M2
P

LX

H0ð�Þ; (25)

3M2
PH

2ð�Þ ¼ 4M4
PH

0ð�Þ2
LX

�L; (26)

where a prime denotes a derivative with respect to the field
�. The number of e-folds dN can similarly be rewritten in
terms of d� by

dN � �Hdt ¼ � Hffiffiffiffiffiffi
2X

p d� (27)

¼ LX

2M2
P

�
Hð�Þ
H0ð�Þ

�
d�: (28)

The flow parameters �, s, and ~s (19) can therefore be
written as derivatives with respect to the field � as

�ð�Þ ¼ 2M2
P

LX

�
H0ð�Þ
Hð�Þ

�
2
; (29)

sð�Þ ¼ � 2M2
P

LX

H0ð�Þ
Hð�Þ

c0Sð�Þ
cSð�Þ ; (30)

~sð�Þ ¼ 2M2
P

LX

H0ð�Þ
Hð�Þ

L0
X

LX

: (31)

Taking successive derivatives d=dN with respect to the
number of e-folds yields an infinite hierarchy of flow
equations [20,21],

d�

dN
¼ ��ð2�� 2~�þ ~sÞ; d~�

dN
¼ �~�ð�þ ~sÞ þ 2
;

ds

dN
¼ �sð�� ~�þ ~sþ sÞ þ ��;

d~s

dN
¼ �~sð�� ~�þ 2~sÞ þ �1�;

d‘


dN
¼ �‘
½‘ð~sþ �Þ � ð‘� 1Þ~�� þ ‘þ1
;

d‘�

dN
¼ �‘�½ð‘� 1Þð�� ~�Þ þ ‘~sþ s� þ ‘þ1�;

d‘�

dN
¼ �‘�½ð‘� 1Þð�� ~�Þ þ ð‘þ 1Þ~s� þ ‘þ1�;

(32)

where the higher-order flow parameters are defined as
follows, where ‘ ¼ 1; . . .1 is an integer parameter:

~�ð�Þ ¼ 1
 ¼ 2M2
P

LX

H00ð�Þ
Hð�Þ ;

‘
ð�Þ ¼
�
2M2

P

LX

�
‘
�
H0ð�Þ
Hð�Þ

�
‘�1 1

Hð�Þ
d‘þ1

d�‘þ1
Hð�Þ;

‘�ð�Þ ¼
�
2M2

P

LX

�
‘
�
H0ð�Þ
Hð�Þ

�
‘�1 1

c�1
S ð�Þ

d‘þ1

d�‘þ1
c�1
S ð�Þ;

‘�ð�Þ ¼
�
2M2

P

LX

�
‘
�
H0ð�Þ
Hð�Þ

�
‘�1 1

LX

d‘þ1

d�‘þ1
LX: (33)

Solutions to this infinite hierarchy of flow equations are
equivalent to solutions of the scalar-field equation of mo-
tion. In the next section, we specialize to the case where the
flow parameters are constant, which results in an exactly
solvable system.

IV. COSMOLOGICAL SOLUTIONS FOR
CONSTANT FLOW PARAMETERS

The simplest way to solve the flow equations derived in
the preceding section is to take all of the flow parameters to
be constant,

d�

dN
¼ ds

dN
¼ d~s

dN
¼ d‘


dN
¼ d‘�

dN
¼ d‘�

dN
¼ 0: (34)

Then, from (19)–(21) we easily find the following rela-
tions:

H / e�N; cS / e�sN; LX / e~sN: (35)

The first two are identical to the DBI case, Eqs. (12) and
(13), but in the fully general case LX evolves indepen-
dently of cS. It is straightforward to verify that the full flow
hierarchy (33) reduces to an exactly solvable set of alge-
braic equations, with the higher-order parameters ex-
pressed in terms of �, s, and ~s. We can use the relations
(29)–(31) to solve for Hð�Þ, cSð�Þ, andLXð�Þ as follows:
from Eqs. (29) and (31), we have

~s ¼ 2M2
P

LX

�
H0

H

�
L0

X

LX

¼ Mp

ffiffiffiffiffiffi
2�

p L0
X

LX

¼ const: (36)

We then have a differential equation for LX,

L0
X

L3=2
X

¼ ~s

MP

ffiffiffiffiffiffi
2�

p ¼ const; (37)

with solution
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L Xð�Þ ¼ 8�

~s2

�
MP

�

�
2
; (38)

where the integration constant has been absorbed into a
field redefinition. From Eq. (35), the field then evolves as

�2 / e�~sN; (39)

so that the direction of the field evolution depends on the
sign of ~s,

d�

�
¼ � ~s

2
dN: (40)

Equation (29) then reduces to�
H0

H

�
2 ¼ 4�2

~s2�2
; (41)

with solution

H / ��2�=~s: (42)

The sign ambiguity can be resolved by requiring that the
Universe be expanding, dH=dN > 0, so that

H / ��2�=~s / e�N: (43)

Finally, we solve for the speed of sound using Eq. (30),
which reduces to

c0S
cS

¼ 2s

~s
¼ const; (44)

with solution

cS / �2s=~s: (45)

Since our choice of N ¼ 0 corresponds to an arbitrary
renormalization of the scale factor a / e�N , we can with-
out loss of generality define cS ¼ 1 at N ¼ 0, so that the
general solution for the background evolution is given by

L X ¼ 8�

~s2

�
MP

�

�
2
; (46)

Hð�Þ ¼ H0

�
�

�0

��2�=~s
; (47)

cSð�Þ ¼
�
�

�0

�
2s=~s

; (48)

where the field evolves as

�

�0

¼ e�~sN=2: (49)

We can derive the time dependence of the scale factor
using the Hamilton-Jacobi equation (25),

_� ¼ ~s

2
Hð�Þ� ¼ ffiffiffiffiffiffi

2X
p

; (50)

so that the kinetic term can be written as

Xð�Þ ¼ ~s2

8
H2ð�Þ�2: (51)

Integrating expression (50) gives

HðtÞ ¼ 1

�t
; (52)

so that the scale factor evolves as a power law in time,
consistent with the relation (9) between � and the equation
of state w ¼ p=�,

aðtÞ / t1=� ¼ t2=3ð1þwÞ: (53)

Radiation-dominated evolution therefore corresponds to
� ¼ 2, and matter-dominated evolution corresponds to � ¼
3=2. Inflation corresponds to � < 1. The comoving Hubble
horizon evolves proportional the to the conformal time,

dH / ðaHÞ�1 / eð1��ÞN / �; (54)

and the acoustic horizon evolves as

DH / cS
aH

/ eð1���sÞN / �ð1���sÞ=ð1��Þ; (55)

identically to the DBI case discussed in Sec. II. For � > 1,
the acoustic horizon is shrinking in comoving units for s <
1� �. Note that this behavior is independent of the pa-
rameter ~s, which determines the form of the Lagrangian, as
we discuss in the next section.

V. RECONSTRUCTING THE ACTION

In the past two sections we have solved the flow hier-
archy for a model characterized by constant flow parame-
ters, which allowed us to solve for Hð�Þ, cSð�Þ, and
LXð�Þ; only the derivative of the Lagrangian with respect
to the kinetic term X is determined. Therefore this solution
corresponds not to a single action but a class of actions. In
this section we derive a general equation for Lagrangians
in this class, and discuss two specific examples.
From Eqs. (38) and (48), we see that the speed of sound

cS can be written in terms of LX

c2S ¼ C�1L�2s=~s
X ¼

�
1þ 2X

LXX

LX

��1
; (56)

where we have used Eq. (18), and defined

C �
�
~s2�2

0

8M2
P�

�
2s=~s

: (57)

The result is a differential equation for the function
LðX;�Þ:

2XLXX þLX � CLn
X ¼ 0; (58)

where we have defined

n � 1þ 2s

~s
: (59)

Therefore, by specifying a relationship between the pa-
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rameters s and ~s, we can construct a Lagrangian as the
solution to the differential equation (58). For example, a
canonical Lagrangian with speed of sound cS ¼ const ¼ 1
is just the case s ¼ 0, so that n ¼ 1 and C ¼ 1, and
Eq. (58) becomes

L XX ¼ 0; (60)

with general solution

L ¼ fð�ÞX � Vð�Þ: (61)

Here fð�Þ and Vð�Þ are free functions which arise from
integration of the second-order equation (58). The function

fð�Þ can be eliminated by a field redefinition d’ ¼ffiffiffiffiffiffiffiffiffiffiffi
fð�Þp

d�, resulting in a manifestly canonical Lagrangian
for ’, as we would expect from setting cS ¼ 1. We em-
phasize that Eq. (58) is constructed using the solution (48),
and is not a general condition on the Lagrangian. That is,
Eq. (58) allows us to construct a Lagrangian which admits
solutions of the desired form, but those solutions are not
necessarily unique. A canonical Lagrangian can support
inflationary solutions, but not tachyacoustic solutions, and
is therefore not of interest here. However, other choices of
n do yield tachyacoustic solutions, and we focus on two
such choices:

(1) n ¼ 0: A cuscuton-like model.
(2) n ¼ 3: A DBI model.

We discuss each case separately below.

A. n ¼ 0: A cuscuton-like model

The case n ¼ 0 corresponds to ~s ¼ �2s in (59), with
solution

L ðX;�Þ ¼ 2fð�Þ ffiffiffiffi
X

p þ CX � Vð�Þ: (62)

This Lagrangian is similar to a ‘‘cuscuton’’ Lagrangian
[29], with the addition of a term proportional to X. Unlike
the original cuscuton model, which represents a causal
field with infinite speed of sound, the solution obtained
here is valid for the general case, in which the speed of
sound can be finite. A similar cuscuton-like Lagrangian
was considered in Ref. [19].

As in the canonical case, the functions fð�Þ and Vð�Þ
are free functions resulting from integrating Eq. (58).
Unlike the canonical case, however, neither can be re-
moved by a field redefinition. However, both functions
are fully determined by our choice of solution with �, s,
and ~s constant. Differentiating Eq. (62) with respect to X
gives

L X ¼ fð�Þffiffiffiffi
X

p þ C ¼ 2�

s2

�
MP

�

�
2
; (63)

where the right-hand side is the solution (46). Then

fð�Þ ¼ ffiffiffiffi
X

p �
2�

s2

��
MP

�0

�
2
��

�0

�

�
2 � 1

�

¼ ffiffiffiffi
X

p �
2�

s2

��
MP

�0

�
2½c2Sð�Þ � 1�; (64)

where for 2~s ¼ �s, the expression (48) for the speed of
sound becomes

cSð�Þ ¼
�
�0

�

�
: (65)

The Lagrangian (62) can then be written as

L ¼ X

�
2�

s2

��
MP

�0

�
2½2c2Sð�Þ � 1� � Vð�Þ: (66)

The Hubble parameter (47) is given by

Hð�Þ ¼ H0

�
�

�0

�
�=s

; (67)

and we can then express the kinetic term as a function of�
using Eq. (51):

Xð�Þ ¼ s2

2
H2�2 ¼ s2

2

�2
0H

2ð�Þ
c2sð�Þ ; (68)

The Lagrangian (62) can then be written entirely as a
function of the field �,

L ¼ M2
P�H

2ð�Þ
�
2� 1

c2Sð�Þ
�
� Vð�Þ: (69)

The Hamilton-Jacobi equation (25) becomes

3M2
PH

2 ¼ 2M2
P�H

2 �L ¼ Vð�Þ þM2
P�H

2

c2S
; (70)

and we have an expression for the potential Vð�Þ,

Vð�Þ ¼ M2
PH

2ð�Þ
�
3� �

c2Sð�Þ
�
: (71)

The Hubble parameter Hð�Þ and the speed of sound cSð�Þ
are given by Eqs. (65) and (67), respectively. For �=�0 �
1, the speed of sound is much greater than the speed of
light, cS � 1, and the potential is approximately

Vð�Þ ’ 3M2
PH

2ð�Þ ¼ 3M2
PH

2
0

�
�

�0

�
2�=s

; (72)

which can be recognized as a slow-roll-like solution domi-
nated by the potentialH2 ’ V2=3M2

P. For s < 0, the field is
rolling away from the origin, and for s < 1� � the comov-
ing acoustic horizon is shrinking and the solution is
tachyacoustic.

B. n ¼ 3: The DBI model

The case n ¼ 3, corresponds to ~s ¼ s; then, from (30)
and (31), we find LX ¼ c�1

S . Equation (59) is then
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c2S ¼
1

CL2
X

; (73)

so that we can take C ¼ 1 without loss of generality.
Therefore, the Lagrangian assumes the well-known DBI
form,

L ðX;�Þ ¼ �f�1ð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fð�ÞX

q
þ f�1ð�Þ � Vð�Þ:

(74)

The DBI model with constant flow parameters is exten-
sively discussed in Ref. [28], and the reader is referred this
paper for further details. For � and s constant, the functions
V and f are fully determined and are given by

Vð�Þ ¼ 3M2
PH

2ð�Þ
�
1�

�
2�

3

�
1

1þ cSð�Þ
�
;

fð�Þ ¼
�

1

2M2
P�

�
1� c2Sð�Þ
H2ð�ÞcSð�Þ :

(75)

The Hubble parameter and speed of sound are given by

Hð�Þ ¼ H0

�
�

�0

��2�=s
; (76)

and

cSð�Þ ¼
�
�

�0

�
2
: (77)

DBI Lagrangians allow for either inflationary or tachya-
coustic evolution [18], depending on the values of � and s.
Note that for cS > 1, the function f is negative, which has
consequences for embedding such a model in string theory,
which we discuss in Sec. VII.

In this section, we have explicitly constructed
Lagrangians, including fully determined potentials, for
which the flow parameters are constant and the background
evolution can be solved exactly. For suitable choices of the
flow parameters, the evolution is tachyacoustic, i.e. with a
growing comoving Hubble horizon and a shrinking comov-
ing acoustic horizon. In the next section, we discuss the
generation of curvature perturbations at the acoustic hori-
zon and show that such perturbations are nearly scale-
invariant, consistent with observation.

VI. COSMOLOGICAL PERTURBATIONS FOR
CONSTANT FLOW PARAMETERS

We can deal with cosmological perturbations in this
general k-essence model with constant flow parameters
in the same way as performed in [28]. Following the
approach of Garriga and Mukhanov [24] we start with
the perturbed Einstein equations,

d

dt

�

�
_�

�
¼ �þ 2M2

Pc
2
S

a2ð�þ pÞ r
2�;

d

dt
ða�Þ ¼ að�þ pÞ

2M2
P

�

�
_�

�
;

(78)

where � is the Bardeen potential and 
� is the perturba-
tion of the field �. Equations (78) can be cast into a more
convenient form by changing the perturbations � and 
�
to the new variables � and � defined by

� ¼ 2M2
P�a

H
; � ¼ H


�
_�
þ�; (79)

so that the perturbed Einstein equations (78) become

_� ¼ að�þ pÞ
H2

�; _� ¼ c2SH
2

a3ð�þ pÞ r
2�: (80)

As usual, we introduce a new variable z and the gauge-
invariant Mukhanov potential u as

z ¼ að�þ pÞ1=2
cSH

; u ¼ z�; (81)

then, from (80) we derive the mode equation for uð�Þ /
ukð�Þ expðik � xÞ, given by

u00k �
�
ðcSkÞ2 þ z00

z

�
uk ¼ 0; (82)

where a prime denotes a derivative with respect to confor-
mal time, ds2 ¼ a2ð�Þðd�2 � dx2Þ. It is easy to show that
the variable z, defined by (81) can be cast into the following
form,

z ¼ �aMP

ffiffiffiffiffiffi
2�

p
cS

; (83)

then, using

d

d�
¼ �aH

d

dN
; (84)

we can evaluate the ratio z00=z in (82) in terms of the flow
parameters (29)–(33); the result is

z00

z
¼ a2H2 �Fð�; ~�; s; ~s; 2
; 1�; 1�Þ; (85)

where

�F � 2þ 2�� 3~�� 3sþ 3

2
~sþ 2�2 þ 5

4
~s2 � 2s~s

þ ~�2 þ 2�ð~s� sÞ þ 3~�s� 5

2
~� ~s�4~��

þ 2
� 1

2
�ð1�Þ þ �ð1�Þ: (86)

Next, it is convenient to change the conformal time, �, to
the ratio of wave number to the sound horizon,
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y � cSk

aH
; (87)

then, conformal time derivatives switch to

d

d�
¼ �aHð1� �� sÞy d

dy
; (88)

and

d2

d�2
¼ a2H2

�
ð1� �� sÞ2y2 d2

dy2

þ �Gð�; ~�; s; ~s; 1�Þy d

dy

�
; (89)

where

�G � �sþ �ð2sþ ~sÞ þ sð2sþ ~sÞ þ 2�2

� 2�~�� s~�� �ð1�Þ: (90)

It is important to stress that the functions F and G derived
above hold in general; they reduce to the well-known
expressions in the DBI limit [28], which, in this case, s ¼
~s and 1� ¼ 1� ¼ �. Substituting (85) and (89) into the
mode equation (82), we find

ð1� �� sÞ2y2 d
2uk
dy2

þ �Gy
duk
dy

þ ½y2 � �F�uk ¼ 0; (91)

which is an exact equation, without any assumption of slow
roll.

In the case where the flow parameters are constant, we
can use the differential equations (32) to reduce the number
of independent parameters. We have

~� ¼ 1

2
ð2�þ ~sÞ; 2
 ¼ 1

2
ð2�þ ~sÞð�þ ~sÞ;

1� ¼ s

2�
ð2sþ ~sÞ; 1� ¼ 3~s2

2�
;

(92)

then, substituting these values into expressions (86) and
(90), we find, respectively,

�F ¼ 2� �� 3sþ 9

4
~s2 � 3

4
s~sþ �s� 1

2
s2; (93)

�G ¼ sð�1þ �þ sÞ: (94)

It is important to notice that �F is different from the corre-
sponding expression found in the DBI case [28], since the
gauge-dependent ~s comes into play. However, �G is identi-
cal to its DBI analog, and it is expected since basically it
comes from the change of variables � ! y, which depends
solely on the parameters cS and H, and not on LX. For
constant flow parameters we can solve Eq. (91) exactly,
and the solutions are given by

ukðyÞ ¼ yðð1��Þ=2ð1���sÞÞ
�
c1H

ð1Þ
�

�
y

1� �� s

�

þ c2H
ð2Þ
�

�
y

1� �� s

��
; (95)

where c1 and c2 are constants, and Hð1Þ
� , Hð2Þ

� are Hankel
functions of first and second kind, respectively. The order �
of the Hankel function is given by

�2 ¼ 9� 6�� 12sþ 9~s2 � 3s~sþ 4�s� 2s2 þ �2

4ð1� �� sÞ2 ;

(96)

next, using (35), (84), and (88) we find that

cS / ys=ð�þs�1Þ; (97)

then, imposing the Bunch-Davies vacuum c2 ¼ 0, and
normalizing the mode amplitudes by means of the canoni-
cal quantization condition

u	k
duk
dy

� uk
du	k
dy

¼ i

cskð1� �� sÞ ; (98)

we find

ukðyÞ ¼ 1

2

ffiffiffiffiffiffiffi
�

csk

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y

1� �� s

r
H�

�
y

1� �� s

�
; (99)

which differs from the DBI case only in the order of the
Hankel function (96). In the small wavelength limit y ! 1
the early-time behavior of uk will be identical to DBI [28]
for constant flow parameters

uk ¼ 1ffiffiffiffiffiffiffiffiffiffi
2csk

p eiy=ð1���sÞ; (100)

whereas in the late-time behavior y ! 0 the mode function
behaves as

jukðyÞj ! 2��3=2 �ð�Þ
�ð3=2Þ ð1� �� sÞ��1=2 y

1=2��ffiffiffiffiffiffiffiffiffiffi
2csk

p : (101)

From (101) we can derive the expression for the scalar
spectral index ns. Using the definition of the power spec-
trum of curvature perturbations

PRðkÞ ¼ k3

2�2

��������ukz
��������

2

; (102)

and substituting expressions (83) and (101) into (102), we
find

PR ¼ jfð�Þj2
8�2M2

P

H2

cS�
(103)

at horizon crossing, where fð�Þ is a constant given by

fð�Þ ¼ 2��3=2 �ð�Þ
�ð3=2Þ ð1� �� sÞ��1=2; (104)

then, from the definition of the scalar spectral index
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ns � 1 � d lnPR

d lnk
; (105)

and using

d

d lnk
¼ �

�
1

1� �� s

�
d

dN
; (106)

we see that the spectral index ns assumes the form

ns ¼ 1� 2�þ s

1� �� s
; (107)

which does not depend on the gauge-dependent parameter
~s, and is identical to its DBI analog. This is expected since
the power spectrum evaluated at the horizon crossing,
Eq. (103), depends solely on H and cS, whose derivatives
with respect to N are related to the gauge-invariant flow
parameters � and s. The scale-invariant limit is s ¼ �2�.

VII. CONCLUSIONS

In this paper we have demonstrated that accelerated
expansion or a collapsing universe are not the only ways
to dynamically generate a scale-invariant spectrum of
superhorizon curvature perturbations. There is a third
way: a superluminal acoustic cone which is shrinking in
comoving coordinates. Curvature perturbations generated
at the acoustic horizon are familiar from inflationary sce-
narios based on noncanonical Lagrangians such as
k-inflation and DBI inflation. Such noncanonical
Lagrangians arise naturally in string theory. However, in
these scenarios, both the Hubble horizon and the acoustic
horizon are shrinking in comoving units, and the acoustic
horizon is typically smaller than the Hubble horizon, i.e.
cS < 1. It is natural to ask whether tachyacoustic models
have a similar, natural stringy embedding, especially since
the DBI action (5) naturally admits tachyacoustic solu-
tions. Such an embedding is nontrivial, however, since
the frequently considered case of a 3þ 1 dimension d-
brane evolving in a higher-dimensional throat is ill defined
in the cS > 1 limit. To see this, consider the full ten-
dimensional metric of throat plus brane [30],

ds210 ¼ h2ðrÞds24 þ h�2ðrÞðdr2 þ r2ds2X5
Þ: (108)

The field � is simply related to the coordinate in the throat
r as � ¼ ffiffiffiffiffi

T3

p
r, where the brane tension T3 depends on the

string scale ms and the string coupling gs as [31]

T3 ¼ m4
s

ð2�Þ3gs
: (109)

The Lagrangian for the field � can be shown to be of the
DBI form (5), where the inverse brane tension fð�Þ is
given in terms of the warp factor hð�Þ by

fð�Þ ¼ 1

T3h
4ð�Þ : (110)

The problem is immediately evident: superluminal propa-

gation cS > 1 requires f < 0, so that the factor h2ð�Þ
appearing in the metric (108) is imaginary, and the metric
is ill defined. Therefore, although the DBI action itself
admits tachyacoustic solutions, this limit does not corre-
spond to a well-defined string solution. It is not clear
whether or not string manifolds exist which self-
consistently admit solutions with cS > 1.
We calculate the scalar spectral index of perturbations

for tachyacoustic solutions, and find

ns ¼ 1� 2�þ s

1� �� s
: (111)

Unlike inflationary models, radiation-dominated tachya-
coustic models do not require a period of explosive entropy
production to transition to a ‘‘hot’’ big bang cosmology.
The early Universe must be scalar-field dominated, but the
temperature of the Universe is not driven exponentially to
zero, since the scalar has a radiation equation of state at all
times, and entropy density is conserved (for any radiation
component with density ��, the ratio ��=�� ¼ const). The

scalar field � must eventually decay to standard model
degrees of freedom, but as long as this happens before
primordial nucleosynthesis, the model will match observa-
tions. A slow or late decay of � into other degrees of
freedom would also suppress the production of unwanted
relics such as monopoles or gravitinos. For radiation-
dominated tachyacoustic expansion with � ¼ 2, the spec-
tral index is

n ¼ 1þ 4þ s

1þ s
; (112)

where we have s <�3 for a shrinking comoving acoustic
cone. For s <�4, the spectral index is blue, n > 1, which
is ruled out by observation. The WMAP 2� limit n ¼
0:96� 0:026 [5] corresponds to s ¼ ½�3:814;�3:959�.
Since the Hubble horizon is growing in comoving units,
no gravitational wave modes are produced.
Tachyacoustic models are not a fully convincing alter-

native to inflation, since they solve only the horizon prob-
lem and not the flatness problem, and inflation solves both
at once. However, inflation has initial conditions problems
of its own, in particular, the fact that the initial inflationary
‘‘patch’’ must be larger than a horizon size for inflation to
start [32]. Furthermore it has been shown that inflationary
spacetimes are in general geodesically past-incomplete
[33]. The initial conditions for tachyacoustic cosmology
are quite different than those for inflation due to the
presence of a true ‘‘big bang’’ singularity at zero time.
However, in this limit, the sound speed is infinite and the
tachyacoustic solution approaches an instanton. To see
this, examine the form of the DBI field Lagrangian (5)
near the � ¼ 0 boundary of a tachyacoustic spacetime.
From Eq. (12), the cS ! 1 limit corresponds to � ! 1
and fð�Þ _�2 ! �1, so that
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L !
_�ffiffiffiffiffiffijfjp � Vð�Þ; (113)

where

_� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g��@��@��

q
: (114)

From Eq. (75), the asymptotic behavior of Vð�Þ and fð�Þ
are

Vð�Þ ! 3M2
PH

2 / ��4�=s;

fð�Þ ! � 1

2M2
P�

cS
H

/ �2ð1þ2�=sÞ:
(115)

The scale-invariant limit s ¼ �2� is especially interesting,
since

1ffiffiffiffiffiffijfjp ! �2 ¼ const; (116)

and the Lagrangian takes the form

L ! �2 _�� Vð�Þ; (117)

where Vð�Þ / �2. This can be identified as exactly the
cuscuton Lagrangian, suggested by Afshordi, et al. as a
candidate for dark energy [29,34,35]. Similarly, the n ¼ 0
solution considered in Sec. Vapproaches a cuscuton on the
initial boundary surface. The cuscuton is a nondynamical,
instantonlike solution with infinite speed of sound.
Consider the action for the Lagrangian (117),

S� ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½�2 _�� Vð�Þ�

¼ �2
Z

d��ð�Þ �
Z

d4x
ffiffiffiffiffiffiffi�g

p
Vð�Þ; (118)

where �ð�Þ is the volume of a constant-� hypersurface in
the spacetime. The classical solutions to the cuscuton
action are constant mean curvature hypersurfaces, analo-
gous to soap bubbles [29]. It is interesting to speculate that
this property of the cuscuton action may provide a self-
consistent cosmological boundary condition, or (even
more speculatively) be useful as a solution to the cosmo-
logical flatness problem. A full analysis, however, would
require inclusion of the gravitational action and solution in
a Wheeler-DeWitt framework, or perhaps an embedding of
the model in string theory or an alternate gravity theory
such as Horava-Lifshitz [36,37]. This is the subject of
future work.
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APPENDIX: STABLE CAUSALITY

Since tachyacoustic cosmology deals with superluminal
propagation of perturbations, it is important to address the
issue of causality in this model. Babichev et al. [26] have
discussed the conditions that must be fulfilled by a general
k-essence model with superluminal propagation in order to
avoid causal paradoxes (i.e., the presence of closed causal
curves—CCC). In this appendix we outline the main ideas
of this work and apply to our tachyacoustic model.
To begin with let us introduce some key definitions [38].

Let g�� be a metric with Lorentzian signature defined on a

given manifold M. Given a point p 2 M, let t� be a
timelike vector at p; then, from this timelike vector we
construct a second metric, ~g��, related to the background

metric g�� by

~g�� � g�� � t�t�: (A1)

The spacetime ðM; g��Þ is defined to be stably causal if

there is a continuous timelike vector field t� such that the
spacetime ðM; ~g��Þ possesses no closed timelike curves.

The following theorem (8.2.2. in [38]) establishes the nec-
essary and sufficient conditions for a spacetime to be stably
causal:
A spacetime ðM; g��Þ is stably causal if and only if

there exists a differentiable function f on M such that
r�f is a past directed timelike vector field.
We can apply this theorem to k-essence models as

follows [26]. First, we must find the analog of the induced
metric (A1) for the case of k-essence models, which can be
obtained by means of the equation of motion for a scalar
field described by a Lagrangian LðX;�Þ,

~G��r�r��þ 2XLX� �L� ¼ 0; (A2)

where ~G��, called ‘‘effective’’ or ‘‘acoustic’’ metric is
given by

~G��ð�;r�Þ ¼ LXg
�� þLXXr��r��: (A3)

It is convenient to use the metric [26]

G�� � cS
L2

X

~G�� (A4)

which is conformally equivalent to ~G��, and hence, defines
the same causal structure. The inverse metric G�1

�� is given

by

G�1
�� � LX

cS

�
g�� � c2S

LXX

LX

r��r��

�
; (A5)

notice that it has the same form of (A1), since r�� is
timelike. Using this definition, we can now apply the
theorem stated above and check the stable causality of k-
essence models. Let t be time coordinate with respect to the
background metric (which is everywhere future directed),
which we take to be FRW. Since g��r�tr�t ¼ 1, we have,

using (A3) and (A4),
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G��r�tr�t ¼ cS
LX

�
1þLXX

LX

_�2

�
; (A6)

then, since for a homogeneous scalar field holds _�2 ¼ 2X,
we have, from (18) and (A6) that

G��r�tr�t ¼ 1

cSLX

> 0; (A7)

provided the null energy condition (NEC) is satisfied, that

is,LX > 0. Therefore, t plays a role of global time for both
spacetimes ðM; g��Þ and ðM; G�1

��Þ, and then the condi-

tions of the theorem are fulfilled. Then, there is no CCC in
superluminal k-essence models built from homogeneous
scalar fields on a FRW background. Since this is exactly
the case of the models introduced in this paper, we con-
clude that there are no causal paradoxes in tachyacoustic
cosmology.
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