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Introduction The phenomenon of self-organized critical-
ity (SOC) on complex networks has recently been stud-
ied in order to understand the failures that take place in
real networks such as power transportation and internet net-
works [1]. The main idea is that, due to the strong relation
among the neighbors, a small catastrophe that occurs in a
node or a small collection of nodes may be spread to the
whole network. Parallel to this, there is a growing litera-
ture that deals with the issue of robustness and the reduction
of overload failure cascades caused by attacks or overload in
complex networks [2]. The remedy often used in order to
avoid the propagation of these cascades is the intentional re-
moval of some special nodes characterized by their degree or
by a given centrality measure.

Here, we propose a control scheme to reduce the probabil-
ity of large avalanches in self-organized critical systems that
happen in complex networks. The control scheme is based
on the triggering of avalanches on a percentage of the high-
est degree nodes.

The issue of controlling SOC in regular lattices, where
mass is added and removed from a system, has been recently
discussed in sandpile models [3]. In that paper, we have
shown that an external control action, which amounts to trig-
gering avalanches in sites that are near to be come critical,
was able to reduce the probability of very large events, so
that mass dissipation occurs most locally. Due to the homo-
geneity of the lattice where traditional SOC phenomena have
been investigated, one difficult present in [3] is that, in order
to make the decision whether an avalanche should or not be
exogenously triggered, one had to simulate a replica model
of the region of the system to be controlled. Here, differently
from [3], the control scheme does not depend on the replica
model and, therefore, is less costly than the one presented
in [3]. Furthermore, while in [3] we were interested in con-
trolling the size of avalanches in only a region of the system,
in this paper we are interested in controlling the size of the
avalanches in the whole network.

Controlled BTW model in complex networks The Bak-
Tang-Wiesenfeld (BTW) sandpile model [4] has been re-
cently studied in scale-free networks [5] by [1]. Here, we
follow closely this previously developed approach. Consider
a network with n nodes. Let k(i) be the degree of node
i ∈ {1, · · · , n} and N (i) be the set of neighbors of node
i. Assume also that each node i ∈ {1, · · · , n} stores a certain
amount zi of mass units. The dynamics of the BTW model
in complex networks may be described by the following two
rules: (a) Addition rule: at each time step, a mass unit is
added to a randomly selected node i ∈ {1, · · · , n}, so that
zi → zi + 1. (b) Toppling rule: if zi ≥ zic = k(i), then
zi → zi − k(i), zj → zj + 1,∀j ∈ N (i).

In order to control the BTW model, we propose here the
so-called Highest Degree Nodes Control Based (H-control),
which assumes that we have global knowledge of the net-
work. The idea is to choose the percentage of highest degree
nodes pH of the network that will be controlled and to build a
set SH with these nodes. To be controlled here means that if
z(i) = zc(i)−1 of a node i ∈ SH in a given time, the control
system triggers an explosion on this node. This means that a
real controlled1 avalanche is triggered by emptying the node
i and the mass available in this site goes randomly to some
of the neighbors belonging toN (i). When it is the case, first
we trigger an avalanche in the highest degree node, then we
trigger in the second highest degree node and so on. We com-
pare this control scheme with the so-called Random Selected
Nodes Control Based (R-control), which assumes no infor-
mation about the network, but it intervenes with the same
frequency of the H-control. In each instant of time, it selects
randomly the nodes to be controlled and triggers an explo-
sion on this node, if z(i) = zc(i)− 1. Both control schemes
assume that we keep the same mass in the system. Unfor-
tunately, we cannot prove optimality of any of these strate-
gies, since the mathematical model associated to this system
is very complicated being a large set of non-linear coupled
difference equations. In fact, in order to reach optimality,
one should deal with partial removal of the demand from the

1We call here the avalanches that occur due to the intervention of the
control scheme as controlled avalanches in order to differentiate them from
the uncontrolled avalanches that happen due to the deposition of mass in
SOC dynamics.



nodes that are likely to become critical and consider all the
possible order of triggering the avalanches. Partial removal
may work worse than both strategies. Although partial re-
moval may avoid avalanches created by the control scheme,
it can allow the system to accumulate energy that in the fu-
ture can cause larger avalanches. Therefore, we only intend
to show that it is possible to reduce the size of avalanches on
complex networks.

Results We have a applied this control scheme to BTW
model on scale-free networks built based on the algorithm
provided by [5] that can be described as follows: Start with
n nodes i ∈ {1, · · · , n} and assign to each of them a weight
equal to wi = i−α, where α ∈ [0, 1] is related to the degree
exponent according to γ = 1+1/α. Then select two different
nodes i, j ∈ {1, · · · , n} with probability equal to the normal-
ized weights wi/

∑n
k=1 wk and wj/

∑n
k=1 wk, respectively,

and connect them if they are not already connected. The ex-
ponent of the avalanche size distribution in these scale-free
networks was determined to be τ = γ/(γ − 1) [1].

Fig.1 compares the the probability distribution function
(PDF) of avalanche sizes p(s) of the uncontrolled system
(solid symbols) with that of the system controlled by the
H-control (hollow symbols). While the data of the un-
controlled system include only the uncontrolled avalanches,
those of the controlled system include controlled and uncon-
trolled avalanches. The PDF of the degrees of the nodes
of the GKK networks presented in this figure is a power-
law with theoretical exponent γ = 3.0, since we used the
value of α = 0.5 to build them. For both networks with 104

and 105 nodes we have numerically obtained the exponent
γ̂ = 3.07. The straight line in Fig. 1 is the best fit to the
data for the systems with size n = 104 and 105 in the inter-
val s ∈ [100.3, 103.3]. Based on this data, the exponent of
the avalanche size distribution in these GKK networks was
determined to be τ̂ = 1.74 which is roughly the value of
the empirically one determined in [1]. Fig.1 also shows that
the H-control is able to strongly reduce the probability of
large events. Besides, this figure shows that when pH in-
creases, the control scheme is more efficient in the reduction
of large size avalanches. Finally, we also compare the effi-
ciency of H-control scheme with R-control scheme. We can
see that although both are efficient to reduce the probability
of large avalanches, the former is much more efficient. The
decrease in the probability of large avalanches results from
the fact that, since only saturated sites are exploded by ran-
dom process, some of them sites are correctly chosen. Fur-
thermore, since the most connected nodes have by definition
more neighbors, even if the explosion are wrongly selected,
these explosions are likely to have some effect in the most
connected nodes.
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Figure 1 – Probability distribution of avalanche sizes p(s) in the
GKK network with mean average degree 4. Points were ob-
tained by logarithmic size bins over the whole range of s. Solid
and hollow symbols denote uncontrolled and controlled sys-
tem, respectively. Uncontrolled system sizes n = 105 (squares)
and 104 (circles). Symbol types indicate the following values
of (n, control scheme (H or R), pH , NT ) for the controlled sys-
tems: squares (105, H, 5%, 0.27), circles (104, H, 5%, 0.25), dia-
monds (104, H, 10%, 0.52) and triangles (104, R, – , 0.25). In the
inset, curves for the ratio f between total number of avalanches
in the controlled and uncontrolled simulations. The number
of time steps are equal for both simulations. Line types are
as follows. Scale-free network: solid (104, H, 5%, 0.25), dashes
(104, H, 10%, 0.52) and dots (104, R, 5%, 0.25). The curve for
(105, H, 5%, 0.27) was not shown since it is difficulty to differ-
entiate this curve from the solid one.
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