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Characterizing the common behavior close to stickiness in Hamiltonian systems
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1. PLAN AND MOTIVATION

In this work we study and compare two Hamiltonian
maps (global and local couplings) with the symplectic map
of Ref. [1] where an unidirectional coupling was used. Basi-
cally N coupled standard maps are used. The main subject
in work [1] was the investigation of how stickiness effects
are distributed in different dimensions and the existence of
a kind "common behavior"for the finite time Lyapunov ex-
ponents (FTLE) distribution at small nonlinearities. As the
nonlinearity increases, it was clearly identified the transition
from quasi-regular to totally chaotic motion which occurs si-
multaneously in all unstable directions. The present work in-
vestigates and explains the common behavior for other cou-
pling models.

2. QUANTITATIVE CHARACTERIZATION OF THE
DISTRIBUTIONS

The presence of stickiness in the mixed phase space of
conservative systems is difficult to detect and to characterize,
in particular for high dimensional phase spaces. In the quasi-
regular regime the sticky motion influences the distribution
of the finite time Lyapunov exponents qualitatively (we de-
note byλ

(k)
n the FTLE withk being the number of positive

Lyapunov exponents). The mentioned influence was quanti-
fied in the work [1] with four variables: the variance (and the
higher cummulants, skewness and kurtosis) and the normali-
zed number of occurencies of the most probable FTLE. We
study systematically standard maps (symplectic systems) be-
ginning with the uncoupled two-dimensional case up to cou-
pled maps of dimensiond = 20. Using the four variables we
find that the effect of the sticky motion on the distributionsof
Lyapunov exponents is equal in different unstable directions

above a thresholdKd of the nonlinearity parameterK for the
high dimensional casesd = 10, 20. Clearly, anomalies in the
FTLE distribution reflect sticky motion. Here we analyze the
higher cummulants of the FTLE defined by:

a.) The variance defined byσ̃ =
〈

(λn − 〈λn〉)2
〉

, which
is the second cummulant of the FTLE distribution. It
should increase for sticky motion. We will analyze the
properties of the relative varianceσ = σ̃/ 〈λn〉2 which
is more appropriate for higher-dimensional systems. In
such cases it is possible to detect small differences rela-
tive to each unstable direction.

b.) The skewness is defined byκ3 =

〈

(λn − 〈λn〉)3
〉

σ̃3/2
. It

is the third cummulant of the FTLE distribution and
detects the asymmetry of the distribution around its
mean value. Forκ3 = 0 we have the regular distri-
bution. Since sticky motion usually reduces the FTLE,
the asymmetry of the distribution leads toκ3 < 0.

c.) The kurtosis is defined byκ4 =

〈

(λn − 〈λn〉)4
〉

σ̃2
− 3,

and detects the shape of the distribution. whereκ4 > 0
indicates that the distribution is flatter than the regular
distribution (κ4 = 0) while κ4 < 0 reveals a sharper
distribution than the normal one.

These three quantities will be used to characterize the de-
gree of sticky motion in the transition from low- to higher-
dimensional systems. Altogether they should give all rele-
vant informations which can be extracted from the distributi-
ons.

3. COUPLED STANDARD MAPS

Coupled standard maps are convenient systems to investi-
gate the sticky motion in high-dimensional phase spaces sys-
tematically. The equations forN coupled standard maps read

q
(i)
n+1 = q(i)

n + p
(i)
n+1, p

(i)
n+1 = p(i)

n + f(qn), (1)



with f(qn) being the global coupling (GC) or local coupling
(LC) defined respectively according to

f(qn) =
K√

N − 1

N
∑

j=1,j 6=i

sin(q(j)
n − q(i)

n ),

f(qn) =
K√
2
[sin(q(i+1)

n − q(i)
n ) − sin(q(i)

n − q(i−1)
n )],

wherei = 1, . . . , N andq ∈ [−π, π] [2]. Besides the sym-
plectic area, the system given by Eqs. (1) also preserves the
total momentum

∑N
i=1 p

(i)
n+1 =

∑N
i=1 p

(i)
n . Therefore we

always have two Lyapunovs equal zero. The phase space tra-
jectories lie on a(2N − 2)-dimensional hyper-space.

4. RESULTS

For the caseN = 3 both couplings (GC and LC) are iden-
tical. This case has six FTLEsλk

n (k = 1 → 6): two posi-
tive, two zero and two negative. The analysis will be done
for the distributions of the two positive FTLEs which are la-
beled such thatλ1

n > λ2
n. Figure 1 shows the cummulants:
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Figura 1 – Comparation of (a) σ(k)(K), (c) κ
(k)
3 (K) and (d)

κ
(k)
4 (K) in the interval K = (0.01, 4.0) and N = 3 for k = 1, 2.

(a) σ(k), (b) κ
(k)
3 and (c)κ(k)

4 as function ofK for λ
(k=1)
n

(red-full line) andλ(k=2)
n (green-dashed line). By comparing

these plots we see that both distributions detect the sticky
motion for0.25 ≤ K ≤ 3.0, whereκ

(k)
3 < 0 andκ

(k)
4 > 0.

Figure 2 shows the behavior for three different values of
K: for K = 3.50 no common motion was detected; in the
case ofK = 0.29 and0.28 we can see some regions where
the local FTLEs collapses to zero because the existence of
stickiness effect.

Figure 3 shows the momentapk
n (k = 1, 2, 3). The black

-1.6

0.0

1.6 (a)K=3.50

-0.2

0.0

0.2 (b)K=0.29

-0.2

0.0

0.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

λ 1
00

0(k
)

106 n

(c)K=0.28

Figura 2 – Time evolution of local FTLE λ
(k)
1000 (k = 1, 2, 5, 6)

for one exemplary trajectory with N = 3 for three different
values ofK.

boxes display two sticky regions forK = 0.29 and 0.28,
where the momentum of each site becomes constant.
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Figura 3 – Time evolution of p(k) (k = 1, 2, 3) for the same
trajectory from Fig. 2. Black boxes show the sticky regions.

5. CONCLUSIONS AND ACKNOWLEDGMENTS

Extensive numerical simulations were also performed for
N = 5, 10 (global and local couplings). We conclude saying
that in all cases we found that the commonn behavior close to
stickiness occurs for small nonlinearities and is always rela-
ted to the conservation of the individual momentum of each
site. Therefore the common behavior is a general feature in
higher dimensional Hamiltonian systems.
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