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high dimensional Hamiltonian systems. high dimensional cases= 10, 20. Clearly, anomalies in the
FTLE distribution reflect sticky motion. Here we analyze the
higher cummulants of the FTLE defined by:

1. PLAN AND MOTIVATION , , )
a.) The variance defined bys = ((A, — (A\,))?), which

In this work we study and compare two Hamiltonian s the second cummulant of the FTLE distribution. It
maps (global and local couplings) with the symplectic map  should increase for sticky motion. We will analyze the
of Ref. [1] where an unidirectional coupling was used. Basi- properties of the relative varianee= &/ <)\n>2 which

cally N coupled standard maps are used. The main subject s more appropriate for higher-dimensional systems. In

in work [1] was the investigation of how stickiness effects  such cases it is possible to detect small differences rela-
are distributed in different dimensions and the existerfce o tive to each unstable direction.

a kind "common behavior"for the finite time Lyapunov ex- <()\ — 0\ >)3>
ponents (FTLE) distribution at small nonlinearities. Agth b.) The skewness is defined byks = % It
nonlinearity increases, it was clearly identified the titms is the third cummulant of the FTLE Wistribution and
from quasi-regular to totally chaotic motion which occurs s detects the asymmetry of the distribution around its
multaneously in all unstable directions. The present work i mean value. Fok; = 0 we have the regular distri-
vestigates and explains the common behavior for other cou-  ption. Since sticky motion usually reduces the FTLE
pling models. the asymmetry of the distribution leadste < 0.

2. QUANTITATIVE CHARACTERIZATION OF THE (A = a)h)

DISTRIBUTIONS c.) The kurtosis is defined byk, = = -3,

o ) ] and detects the shape of the distribution. where- 0
The presence of stickiness in the mixed phase space of jngicates that the distribution is flatter than the regular
conservative systems is difficult to detect and to chareeter distribution (4 = 0) while x4 < 0 reveals a sharper

in particular for high d_imensior_1a| phase spaces. In_ th_eiqu_as distribution than the normal one.

regular regime the sticky motion influences the distributio N ) )

of the finite time Lyapunov exponents qualitatively (we de-These three quantities will be used to characterize the de-
note by/\glk) the FTLE with being the number of positive gree of.stlcky motion in the transition from low- _to higher-
Lyapunov exponents). The mentioned influence was quantg'me,nSIOhaI §ystem§. Altogether they should glve.al!'rele—
fied in the work [1] with four variables: the variance (and thevant informations which can be extracted from the distribut
higher cummulants, skewness and kurtosis) and the normafs:

zed number of occurencies of the most probable FTLE. W% COUPLED STANDARD MAPS

study systematically standard maps (symplectic systems) b~

ginning with the uncoupled two-dimensional case up to cou- Coupled standard maps are convenient systems to investi-
pled maps of dimensiosh = 20. Using the four variables we gate the sticky motion in high-dimensional phase spaces sys
find that the effect of the sticky motion on the distributiafis tematically. The equations fé¥ coupled standard maps read

Lyapunov exponents is equal in different unstable direstio i i i i i
quj—l = q7(1) + pSL-)‘rl7 ng-)i-l = p%) + f(Qn)7 (1)



with f(g,) being the global coupling (GC) or local coupling 16 LESBED ettt 2]
(LC) defined respectively according to 00 | ]
16
flg) = K ZN: in(g0) — q0) 02
) = N1 2 sin(g;’” = g,"), o
J=1,j#i
fan) = “efsin(gftD - ¢f) —sin(q® — gfV)], -
\/i n n n n g 0.2
8 0.0
wherei = 1,..., N andq € [—7, ] [2]. Besides the sym- < o2l
plectic area, the system given by Egs. (1) also preserves the 00 01 02 03 04 05 06 07 08 09 L0
total momentumy"" | p!) | = SN ). Therefore we 10°n
always have two Lyapunovs equal zero. The phase space tra-
jectories lie on 2N — 2)-dimensional hyper-space. Figura 2 — Time evolution of local FTLE A'%)  (k = 1,2, 5,6)
for one exemplary trajectory with N = 3 for three different
4. RESULTS values of K.

For the caséV = 3 both couplings (GC and LC) are iden-

tical. This case has six FTLES (k = 1 — 6): two posi- boxes display two sticky regions fak = 0.29 and0.28,

tive, two zero and two negative. The analysis will be dongNhere the momentum of each site becomes constant
for the distributions of the two positive FTLEs which are la- '

beled such thak} > A\2. Figure 1 shows the cummulants: 20
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10 Figura 3 — Time evolution of p* (k = 1,2,3) for the same
08l 8 - trajectory from Fig. 2. Black boxes show the sticky regions.
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00 04 08 12 16 20 2.4 28 32 36 4.0 Extensive numerical simulations were also performed for

K N = 5,10 (global and local couplings). We conclude saying

that in all cases we found that the commonn behavior close to

Figura 1 — Comparation of (a) o*(K), (c) x{*'(K) and (d)  stickiness occurs for small nonlinearities and is alwaye-re

£ (K)intheinterval K = (0.01,4.0)and N = 3for k=1,2.  ted to the conservation of the individual momentum of each
site. Therefore the common behavior is a general feature in

X (k) (k) ) (k=1) higher dimensional Hamiltonian systems.

(@ o™, (b) k3" and (c)x;" as function ofK for Ay The authors thank CNPq for financial support.

(red-full line) and\=2) (green-dashed line). By comparing

these plots we see that both distributions detect the stickireferéncias

. k k
motion for0.25 < K < 3.0, wherex;” < 0 andr}” > 0. [1] C.Manchein, M. W. Beims, and J. M. Rost, “Footprints
Figure 2 shows the behavior for three different values of of sticky motion in the phase space of higher dimensio-
K: for K = 3.50 no common motion was detected; in the nal symplectic systems,” submitted for publication.

case ofK = 0.29 and(.28 we can see some regions where o S o
the local FTLEs collapses to zero because the existence of2] T. Konishi and K. Kaneko, “Diffusion in Hamiltonian
stickiness effect. chaos and its size dependence,” J. Phys. A: Math. Gen.

Figure 3 shows the moment§ (k = 1,2,3). The black Vol. 23, pp. 715-720, 1990.



