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1. INTRODUCTION

Electrostatic turbulence is the main cause of anomalous
particle transport at the plasma edge in tokamaks [1]. De-
spite the recent theoretical and experimental progress on the
understanding of this turbulence a complete description of
the observations has not yet been achieved. Thus, under-
standing this turbulence behavior is still necessary to com-
plete the plasma edge description and to improve plasma
confinement in tokamaks. In some recent studies [2], ana-
lyzes of the electrostatic fluctuations from confined magnet-
ically plasmas have been described by their space and time
self-organized similarity behavior (SOC) [2]. The concept
of SOC [3] brings together the ideas of self-organization of
nonlinear dynamics systems with the often observed near-
critical behavior. The several distinct parading are available
for transport of mass or other quantities across plasma con-
fined by a magnetic field. Avalanches events in plasma con-
fined [4] are a key ingredient in the theory of self-organized
criticality (SOC) and an intuitive analyses of avalanche is
based on modeling of sandpile [2, 3].

2. RESULTS

In this work we investigate the plasma edge turbulence
in the tokamak TCABR [5] and identify evidence of self-
organized criticality (SOC) behavior of the experimental
fluctuating floating electrostatic [4] potential measured by
Langmuir probes in the plasma edge and scrape-off layer
[Fig.1]. The self-organized criticality (SOC) behavior of the
plasma edge is studied using fluctuations data from TCABR
measured by Langmuir probe. We looke for possible evi-
dence of SOC in the plasma transport. The expectation is that
the frequency spectrum analysis should show scaling behav-
ior, fα , with α = −1 [Fig.2].

The autocorrelation function shows an extended tail at
large delay times [Fig.3] and high Hurst parameters [Fig.4]
indicating the existence of self-organized criticality (SOC)
found in TCABR fluctuations.

Figure 1 – Time evolution of plasma discharge in TCABR toka-
mak. (a) Plasma current, (b) central chord plasma mean den-
sity, (c) floating electrostatic potential for a typical discharge
inside the limiter (r=17 cm), (d) Floating electrostatic potential
outside the limiter (r=19 cm). The vertical black lines indicate
the analyzed time interval.

Figure 2 – Power spectra S(f) of the floating potential fluctuation
at radial position r/a=1 (border of plasma column).

The experimental flux profile [Fig.5] is compared with
the simulated one, obtained from a cellular automata sand-



Figure 3 – Aucorrelation Function (ACF) of the floating poten-
tial fluctuations measured at radial position r/a=1 (border of
plasma column).

Figure 4 – Radial dependence of the Hurst parameter (small
solid triangles up). The black dashed line is a fitting of the Hurst
parameter profile for the experimental floating potential fluctu-
ation. The vertical black line marks the position of the plasma
column (r/a=1)

pile model, showed in Fig.6. The usual sandpile model [6]
is modified by the addition of a specific diffusive function
required to qualitatively reproduce the experimental particle
flux and density at the TCABR plasma edge.

.

Figure 5 – Radial profile of plasma flux from experimental data
(TCABR). The blue dashed line is a secant hyborblic fitting of
TCABR data.

3. CONCLUSION

In conclusion, the floating potencial fluctuation data from
TCABR tokamak shows SOC behavior evidence. The intro-
duced model reproduces the radial profiles of density, par-

Figure 6 – Radial profile of flux obtained from the modified
sandpile model.

ticle transport, and zonal flow observed in TCABR plasma
edge.
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