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Chaotic phenomena can be observed in a diversity of 
systems, usually described by real variables [1]. The 
search of a real chaotic driven complex oscillator of the 
form ( ) tiezzfz ΩΑ=+ ,&  is a challenge, where ( )zzf ,  is a 
quadratic polynomial function with real coefficients. 
Motivated by the recent work of Marshall and Sprott [2], 
we carried out a detailed numerical study of the following 
driven complex oscillator, 

 
 ( ) tiezzzz ΩΑ=+−+ 1& ,   (1) 

 
where ( ) ( ) 1, +−= zzzzzf . In Eq. (1), the complex 
variable z  can be written as iyxz += , with x , and y  
being real variables. z  is the complex conjugate of z . 
From Eq. (1), we can derive an equivalent form to the 
driven two-dimensional system, 

 
 ( )tyx ΩΑ=+− cos12 2& ,  
      (2) 
 ( )txyy ΩΑ=+ sin2& .    
 
Eqs. (2) is a nonautonomous two-dimensional 

system, which can be transformed to an autonomous 
three-dimensional system, Eqs. (3), with the 
transformation tw Ω= . 

 
 ( )wyx cos12 2 Α+−=& ,  
       
 ( )wxyy sin2 Α+−=& ,   (3) 
 
 Ω=w& . 
 
The numerical study carried out in this work consists 

of to calculate the largest Lyapunov exponent, 
numerically solving the Eqs. (3) with the fourth-order 
Runge-Kutta method with time step equal to 310− , for 
each pair of parameters ( )ΩΑ, . The range of parameter 
values was discretized in a mesh of 500500×  points 
equally spaced. We identify for each largest Lyapunov 

exponent a color, varying continuously from black (zero 
exponent), passing through yellow (positive exponent), up 
to red (positive exponent). 

 
Fig. 1 shows the colorful Lyapunov exponent 

diagram for the parameters ( )ΩΑ,  of Eqs. (3). The color 
scale in right side is used to codify the largest Lyapunov 
exponent values in colors. The black regions represent 
periodic or quasi-periodic (2-tori) behaviors, and the 
yellowish and reddish regions represent chaotic behaviors. 
Inside the chaotic regions, we can observe the existence of 
immersed periodic structures, represented by the black 
regions inside of the yellowish and reddish regions. The 
green line in Fig.1 refers to the point positions studied in 
Ref. [2] for the Eqs. (3). Then, in our work we extended 
the regions studied in Ref. [2], given us a more detailed 
behavior of Eqs. (3). 

 
Fig. 2 shows the phase portraits (attractors) located in 

the numbered green symbols of Fig. 1. All the phase 
portraits are in periodic regions, black colors in Fig. 1. In 
Fig. 2, we observe attractors with periodic behaviors (limit 
cycles), for example, attractors 1, 2, 6, 7, 8, 10, and 11, 
and attractors with quasi-periodic behaviors (2-tori), for 
example, attractors 3, 4, 5, 9, and 12. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 – Largest Lyapunov exponent diagram. The right side scale 
identifies in colors the largest exponent. The points along the green 
line in 1=Α , locate the studies carried out in Ref. [2] for the Eqs. 
(3). The numbered green symbols localize the attractors shown in 
Fig. 2. 

 
Periodic structures embedded in chaotic regions were 



reported in recent works [3-6], where the dynamical 
systems are modeled by a set of first-order differential 
equations. In those works, the observed periodic 
structures organize themselves in bifurcation cascades, 
called by period-adding cascades, that accumulate in 
periodic boundaries. That behavior seems to be a common 
feature presented in those systems. However, in the 
system studied here, modeled by Eqs. (3), that feature was 
not observed in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – Phase portraits of the numbered green symbols in Fig. 1. 
The inside numbers refer to the position of the attractors in Fig. 1. 

 
A two-dimensional bifurcation diagram, using the 

largest Lyapunov exponent codified in a continuous range 
of colors, for a driven chaotic oscillator with complex 
variable was reported. We observed a diversity of periodic 
structures immersed in the chaotic regions. Periodic, 
quasi-periodic and chaotic behaviors were observed in the 
colorful diagram. The periodic behaviors were identified 
as limit cycles, the quasi-periodic ones were identified as 
2-tori, and the chaotic ones were identified as chaotic 
attractors.  
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