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1. BACKGROUND 

The field of systems biology aims to examine the 

dynamic properties of biological processes as a whole 

rather than in isolated components. Biological phenotypes 

typically arise from complex sets of interacting 

biochemical processes whose effects are difficult to 

predict from qualitative observation and reductionist 

analysis. As a consequence, recent years have witnessed a 

rapid development in the construction of quantitative, 

predictive mathematical models describing the 

interactions between intracellular biochemical 

compounds. 

Progress has been particularly widespread in the area 

of cellular metabolism. Metabolic networks describe the 

set of biochemical reactions through which living 

organisms transform nutrients into energy and biomass 

allowing them to maintain their structure, grow and 

reproduce. These networks typically contain from a few 

hundred to a few thousand of reactions. Stoichiometric 

models, which embed the topology of metabolic reactions 

and the mass conservation property, have been built at the 

scale of entire organisms for many species from 

microorganisms to humans. However, these models 

provide limited insights into the functioning of cellular 

processes since their use is limited to steady-state 

simulations. To understand the detailed dynamics of 

cellular functions and their regulation, it is necessary to 

advance toward dynamic models where the behavior of 

the system can change over time. 

To construct a dynamic model of the metabolism of 

an entire cell is highly challenging since it requires the 

assembly and solving of systems of several hundred of 

non-linear differential equations. Furthermore, the kinetic 

rate equations of individual reactions are often complex 

and poorly known. Parameter values need to be measured 

by expensive and time-consuming experiments, and 

values available in the literature may vary depending on 

specific in vitro or in vivo experimental conditions. 

Therefore, a degree of generalization and simplification is 

required to reduce model complexity and streamline 

model construction. 

Nevertheless, there is growing awareness that exact 

rate equations and precise parameters values are often not 

crucial in determining the fundamental dynamic properties 

of biological systems. Studies have shown that the main 

phenotypes of many biological systems are insensitive to 

changes in parameter values inside a large space of 

variations, except for a few combinations of key 

parameters [1]. Biological systems are by nature robust 

and resilient to perturbations since living organisms must 

maintain homeostasis of their intracellular functions 

despite fluctuating environmental conditions. The 

predictive and informative value of models is thus not 

necessarily or wholly dependent on a high level of detail 

in the modeling of individual processes. 

2. GENERIC KINETIC EQUATIONS 

Building on these principles, we developed a 

modeling framework based on generic kinetic equations in 

order to enable the construction of large dynamic models 

of metabolic systems and reach the necessary scale for 

cell-wide simulations. A widely used formulation of 

metabolic reaction kinetics is the Michaelis-Menten rate 

equation, which relies on a two-step scheme describing 

the binding of a catalytic enzyme to the reaction substrate 

and subsequent release of the reaction product. For a 

simple reversible reaction transforming a substrate S into 

a product P, the reaction rate v is given by 
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where e0 is the concentration of enzyme, s and p are the 

concentrations of S and P respectively, v+
m
 and v-

m
 are the 

limiting rates of the forward and backward reaction 

respectively, KmS and KmP are the Michaelis constants 

associated to S and P respectively. 

Variants of equation (1) were derived for reactions 

involving multiple substrates and products, reversible and 

irreversible reactions, and different catalytic mechanisms, 

using the King-Altman method [2]. These equations offer 

a reliable approximation of the kinetics obeyed by most 

real enzyme-catalytic reactions. Under the further 

assumptions that biochemical reactions are reversible and 

that interactions between metabolic compounds and 

enzymes play a negligible role, it becomes possible to 

automate the generation of kinetic equations for large 

systems of metabolic reactions using only the topology 



and stoichiometry of the metabolic network. 

3. GENERIC MODEL OF YEAST GLYCOLYSIS 

3.1. Model construction 

We applied these principles to construct a generic 

model of the glycolysis pathway of the baker’s yeast 

Saccharomyces cerevisiae and compared its properties to 

a model based on the experimental determination of rate 

equations and parameters developed by Teusink et al. [3]. 

Glycolysis is a major metabolic pathway describing the 

conversion of glucose into pyruvate, which occurs in 

nearly all organisms. It is also one of the best 

experimentally characterized, making it an ideal case 

study to assess whether the behavior of a metabolic 

system can be predicted without accurately measuring the 

rate equations and detailed kinetics of every enzyme. 

Our model includes all enzymes involved in the 

pathway from glucose uptake to the production of 

pyruvate and ethanol. All reactions were assumed to be 

reversible and of a random-order mechanism. The initial 

concentrations of metabolites were the same as in the 

Teusink model. Generic rate equations were derived from 

the stoichiometry of the network and assembled into a 

system of ordinary differential equations. The model 

parameters were estimated from steady-state simulations 

by the Teusink model with glucose uptake concentrations 

of 10 and 50 mM. 

3.2. Simulations and model validation 

We first verified whether the generic model correctly 

reproduced the behavior of the glycolytic system at steady 

state, without any perturbation, when glucose uptake was 

at 10 and 50 mM. We obtained a near-perfect agreement 

between our model and the Teusink model, confirming 

that the model reproduced the correct concentration and 

flux values used in the training data (Table 1). 

We subsequently simulated the effect of a 

dynamically reduced uptake of glucose: after 30 min, the 

concentration of glucose was reduced from the original 50 

to 10 mM. Results from this experiment again showed an 

excellent agreement between our model and the Teusink 

model with the same reduction in glucose uptake. 

Table 1 – Selected concentrations and fluxes in simulations by the 
generic glycolysis model and the Teusink model [4]. 

G6P: glucose 6-phosphate; F6P: fructose 6-phosphate; PYR: pyruvate; 

HK: hexokinase; PGI: glucose 6-phosphate isomerase; 

PGK: phosphoglycerate kinase. 

Metabolite 

concentrations 

(mM) 

Glucose 

10 mM 

Glucose 

100 mM 

Fluxes 

(mmol 

min-1 l-1) 

Glucose 

10 mM 

Glucose 

100 mM 

Generic model      

G6P 0.73 1.07 HK 80.13 89.48 

F6P 0.07 0.11 PGI 69.39 78.58 

PYR 6.73 8.80 PGK 121.59 138.49 

Teusink model      

G6P 0.72 1.09 HK 80.16 89.25 

F6P 0.07 0.12 PGI 69.36 78.45 

PYR 6.72 8.85 PGK 121.48 138.57 

Additional simulations were carried out to verify if 

the model would predict new states of the glycolysis 

pathway outside the range of training data and without re-

estimating the kinetic parameters. We carried out 

simulations by changing the level of glucose to 1, 100 and 

200 mM and the results again showed an excellent 

agreement between our generic model and the Teusink 

model (Table 1). Moreover, the generic model appeared to 

be more robust since it was still able to produce results 

with very low concentrations of glucose (1 mM) while the 

Teusink model was unsuccessful when glucose uptake was 

lower than 2 mM. 

3.3. Elementary modes analysis 

In order to test our underlying hypothesis that 

metabolic systems are resilient to perturbation, we further 

analyzed the distribution of elementary mode fluxes in the 

generic model over a wide range of parameter values. In 

metabolic systems, elementary modes are minimal 

feasible steady-state routes corresponding to elementary 

paths of biochemical transformations between 

metabolites. Elementary modes constitute a basis of 

metabolic functions; every steady-state flux distribution 

can be decomposed into elementary mode fluxes [4]. This 

analysis revealed that one elementary mode remains 

dominant in all cases while other modes generally carry 

low flux. The glycolysis system therefore exhibits stable 

behavior upon perturbations and only reaches a small 

subset of the space of stoichiometrically feasible states. 

4. CONCLUSION 

Through the example of the yeast glycolysis system, 

we showed that a model based on generic kinetic 

equations is able to simulate a metabolic system with a 

comparable accuracy to a detailed model based on 

detailed experimental determinations. We implemented 

this methodology in the GRaPe software [5]. These 

principles may be exploited to automate the construction 

of large models of intracellular metabolism and achieve 

the scales needed for cell-wide dynamic modeling. 
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