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1. DYNAMICAL TRANSITION STATE THEORY

The Transition State Theory (TST) is a theory developed
to understand chemical reactions. The Transition Statg (TS
is a set of states that all reactive trajectories must ctdss-
ally, the TS is determined by searching for saddle points on
the potential energy surface (PES), and the TS is a dividing
surface in the configuration space. However, it was soon rec-
ognized that the TS as defined above was not a surface of
no return [1] due to the existence of re-crossing trajeetori Figure 1 — Upper panel: Proyection of energy surfaces to the
which lead to a overestimation of the reaction rates. Wignep!ane of normal form coordinates. Lower panel: Proyection
[2] was the first to suggest that the TS should be defined ifyPical reactivand non reactive trajectories.
phase space. At this point the key question of how to con-
struct analytically the TS arises. However, progress ia thi
direction had to wait for advances in nonlinear dynamics. ¢. = 01in (2):

We consider a n-DOF HamiltonigH with an equilibrium n—1 2

point of center x center x ... x saddle type (a rank one Krs = Z Ji + ?n (2)
saddle). Around the saddle, the phase space geometry be- i=1

comes transparent when normal form coordinates are useg.., is a (2n-2)-dimensional sphere. From the Hamilto-
The transformation from the primitive to these new coordi-njan equations of motion, it can be seen that the manifold
nates is constructed using the Poincaré-Birkhoff normaaliz ; — ;, = 0 is a Normally Hyperbolic Invariant Manifold
tion procedure [3]: This algorithm yields the back and forth \H m)[4]:

canonical transformation between the original and the nor- n—1
mal form coordinates and all the geometrical structures can Knigiv = Z J;. (3)
be expressed by explicit equations. A sequence of canonical i1

transformations expressesinto its normal formiC: . . . .
P For E > 0, Kymram is a (2n-3)-dimensional sphere acting

ne1 like a multidimensional saddle pointCy gy has (2n-2)-
K = Z Ji+ T+ F(J1, .oy Jny Tn), (1) dimensional stablél* and unstablé¥* manifolds (cylin-
i1 ders) which are separatrices in the (2n-1)-energy surface.
2 Wl P2 W, The two "halves" of the TS are crossed by forward/backward
I, = 5 g Ji = B} + DRk reactive trajectories. The TS is divided in these halvesby t

NHIM. W#* are attached to the NHIM.
The termF is responsible for the nonlinear terms. If the  WhenF is considered, ones arrives to the same qualita-
linear case is considerel = 0. For E < 0, K is a (2n-1)- tive conclusions. The TS is a deformed (2n-2)-sphere whose
spherical cone and there are no reactive trajectories. Whegquator is the NHIM. The NHIM has attached the (2n-2)-
E > 0, K is a (2n-1) -spherical cylinder and there are reac-dimensionaliV’*-* which are deformed cylindergd s di-
tive trajectories (see Fig. 1). Because all and only reactivvide the energy shell: they are impenetrable barriers ispha
trajectories cross the ling, = 0, we define the TS by setting space that separate reactive from non-reactive trajestori



For a deep revision of the state of the art, we refer the read@io compute total fluxdror 4, We assume that trajectories
to [5] and references therein. are launched fromy — oo (the H atom is far away from
the H, molecule and the PES do not dependrenThence,
for a given energyF, ®rorar is the flux across the two-

Usually, the calculation of reaction rates is carried by usdimensional (forward) surfacgr:
ing expensive Monte Carlo methods. However, the DTST,

. . 2 2

provides a "cheaper" method to calculate the reaction rateg, = g — P11+ P2 —Ppip2 V(e — 00,0 = ¢) (6)
P(E) of a given chemical reaction. It was shown ti4tF) mp
is proportional to the directional phase flux TS across th - : .
TS [6]. From the Stokes’ theorem, TS is the action inte-erhe limit of Sy is & closed curv€, and thedror 4z is the

! curl integral over that curve. In Fig. 3 is shown a compari-
gral over the NHIM and can be easily computed from KN- h il £ caleul M |
HIM. Indeed, if S is the "area" enclosed by the contour 2" between the probabilify( ) calculated by Monte Carlo

K _ 7 the flux is given by: method and by the DTST method. The agreer_nent between
NHIM : 9 y: the results of both procedures is very good. It is worth not-
o =(2m)" IS ing that the method based on DTST is computationally much
more efficient than the standard Monte Carlo procedure.
2. APPLICATIONTOTHE H + Hy, — Hy+ H

1.1. Phase flux and reaction probability

0.5

For this reaction, we use the BKMP potential energy sur-
faceV (rq,r2,0) [7]. The Hamiltonian of the system is:

N
=

o
[

_ pi+ps—pipe
mir

H + V(r1,re, 6). (4)

o
o

« « » « Normal Form
Monte Carlo

Probability P(E)

e

The above Hamiltonian presents a rank one saddle point at )
r1 = re = 1.757 a0 andrs = r1 + r2 (Collinear directions). O S o1 157 015 o155 .54
We use the DTST to determine the objects that control this Energy (a.0.)

reaction in the collinear case and to calculate P(E) as a func
tion of the energy E. The application of the DTST is carried
in three steps (see [8] for a different example):

Figure 3 — Reaction probability as function of the energy.

e We apply a change of coordinates that carries the sadd|8eferences

point to the origin. .
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P(E) = 18 (5)
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