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1. DYNAMICAL TRANSITION STATE THEORY

The Transition State Theory (TST) is a theory developed
to understand chemical reactions. The Transition State (TS)
is a set of states that all reactive trajectories must cross.Usu-
ally, the TS is determined by searching for saddle points on
the potential energy surface (PES), and the TS is a dividing
surface in the configuration space. However, it was soon rec-
ognized that the TS as defined above was not a surface of
no return [1] due to the existence of re-crossing trajectories
which lead to a overestimation of the reaction rates. Wigner
[2] was the first to suggest that the TS should be defined in
phase space. At this point the key question of how to con-
struct analytically the TS arises. However, progress in this
direction had to wait for advances in nonlinear dynamics.
We consider a n-DOF HamiltonianH with an equilibrium
point of center × center × ... × saddle type (a rank one
saddle). Around the saddle, the phase space geometry be-
comes transparent when normal form coordinates are used.
The transformation from the primitive to these new coordi-
nates is constructed using the Poincaré-Birkhoff normaliza-
tion procedure [3]: This algorithm yields the back and forth
canonical transformation between the original and the nor-
mal form coordinates and all the geometrical structures can
be expressed by explicit equations. A sequence of canonical
transformations expressesH into its normal formK:
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The termF is responsible for the nonlinear terms. If the
linear case is consideredF = 0. For E < 0, K is a (2n-1)-
spherical cone and there are no reactive trajectories. When
E > 0, K is a (2n-1) -spherical cylinder and there are reac-
tive trajectories (see Fig. 1). Because all and only reactive
trajectories cross the lineqn = 0, we define the TS by setting
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Figure 1 – Upper panel: Proyection of energy surfaces to the
plane of normal form coordinates. Lower panel: Proyection of
typical reactiv and non reactive trajectories.

qn = 0 in (2):

KTS =

n−1∑

i=1

Ji +
p2

n

2
. (2)

KTS is a (2n-2)-dimensional sphere. From the Hamilto-
nian equations of motion, it can be seen that the manifold
qn = pn = 0 is a Normally Hyperbolic Invariant Manifold
(NHIM)[4]:

KNHIM =

n−1∑

i=1

Ji. (3)

For E > 0, KNHIM is a (2n-3)-dimensional sphere acting
like a multidimensional saddle point.KNHIM has (2n-2)-
dimensional stableW s and unstableWu manifolds (cylin-
ders) which are separatrices in the (2n-1)-energy surface.
The two "halves" of the TS are crossed by forward/backward
reactive trajectories. The TS is divided in these halves by the
NHIM. W s,u are attached to the NHIM.

WhenF is considered, ones arrives to the same qualita-
tive conclusions. The TS is a deformed (2n-2)-sphere whose
equator is the NHIM. The NHIM has attached the (2n-2)-
dimensionalW s,u which are deformed cylinders.W s,u di-
vide the energy shell: they are impenetrable barriers in phase
space that separate reactive from non-reactive trajectories.



For a deep revision of the state of the art, we refer the reader
to [5] and references therein.

1.1. Phase flux and reaction probability

Usually, the calculation of reaction rates is carried by us-
ing expensive Monte Carlo methods. However, the DTST,
provides a "cheaper" method to calculate the reaction rate
P (E) of a given chemical reaction. It was shown thatP (E)
is proportional to the directional phase flux TS across the
TS [6]. From the Stokes’ theorem, TS is the action inte-
gral over the NHIM and can be easily computed from KN-
HIM. Indeed, if S is the "area" enclosed by the contour
KNHIM = E, the flux is given by:

Φ = (2π)n−1
S

2. APPLICATION TO THE H + H2 −→ H2 + H

For this reaction, we use the BKMP potential energy sur-
faceV (r1, r2, θ) [7]. The Hamiltonian of the system is:

H =
p2

1
+ p2

2
− p1p2

mH

+ V (r1, r2, θ). (4)

The above Hamiltonian presents a rank one saddle point at
r1 = r2 = 1.757 a0 andr3 = r1 + r2 (Collinear directions).
We use the DTST to determine the objects that control this
reaction in the collinear case and to calculate P(E) as a func-
tion of the energy E. The application of the DTST is carried
in three steps (see [8] for a different example):

• We apply a change of coordinates that carries the saddle
point to the origin.

• We expressH as a N order Taylor expansion around the
origin.

• We transformH into its normal formK up to the desired
accuracy:K = J1 + I + F(J1, I).

Now, all the geometrical objects controlling the reaction are
determined (see Fig. 2).

Figure 2 – Projection of the TS, NHIM and W
s,u manifolds

for the collinear H + H2 −→ H2 + H reaction.

For a given energyE, the reaction probabilityP (E) is
the fraction of the total phase flux that cross the TS: The flux
TS is computed as the action of the NHIM and it is easily
obtained from the Normal Form:

P (E) =
ΦTS

ΦTOTAL

(5)

To compute total fluxΦTOTAL we assume that trajectories
are launched fromr2 → ∞ (the H atom is far away from
theH2 molecule and the PES do not depend onr2. Thence,
for a given energyE, ΦTOTAL is the flux across the two-
dimensional (forward) surfaceSF :

SF ≡ E =
p2

1
+ p2

2
− p1p2

mH

+ V (r1, r2 → ∞, θ = φ) (6)

The limit of SF is a closed curveC, and theΦTOTAL is the
curl integral over that curve. In Fig. 3 is shown a compari-
son between the probabilityP (E) calculated by Monte Carlo
method and by the DTST method. The agreement between
the results of both procedures is very good. It is worth not-
ing that the method based on DTST is computationally much
more efficient than the standard Monte Carlo procedure.
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Figure 3 – Reaction probability as function of the energy.
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