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The Swift-Hohenberg equation (SHE) is a well
known model for pattern formation [1,2,3]. The non-
linear differential equation was conceived as a
representation of Rayleigh-Bérnard convection [3.4,5],
but its form is recurrent in systems presenting patterns,
especially stripe-like patterning, in various contexts. The
basic SHE equation is:
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where, is ¢ a parameter related to the Rayleigh number, .
is the critical wave vector, and u is the velocity vertical
component of the fluid. We study the dynamics of defects
in the one-dimensional SHE with periodic boundary
conditions via numerical integration [12]. We define a
defect as a local maximum on »’ smaller than a threshold
value (typically 90% of the mean of the 20% highest
peaks), such that a pattern that has all peaks at similar
heights would have no defect.

Simulating the dynamics for a random initial
configuration of the fluid velocity, different values for the
system length (L) and many different values for the
parameter k., we observe a power-law decay of the

number of defects with time, i.e., A N oc t~ Y, as shown

in Figure 1. We use ANp= Np — N., where N, is the
number of defects after a very long time relaxation, this
may be different from zero for some values of the
parameters, specially for k.<0.4 . Surprisingly, the decay
exponent y depends linearly on k. this can be seen in
Figure 2.

We also consider pattern switching by starting the
system from a initial condition defined by a wave vector
different from the one that grows more rapidly in the
presence of noise.
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Figure 1 — Mean number of defects versus time in a set of 50
realizations, k=0.5 ; ¢=0.1; L=500.
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Figure 2 — Decay exponent y versus k. for L=500 and L=1000
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