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1. INTRODUCTION

The application of differential geometry and topology
concepts has led to new results in the physics of Hamiltonian
dynamical systems. In particular, these concepts allow the
identification of typical dynamical concepts with geometric
and topological ones, e.g., trajectories of a dynamical sys-
tem are the geodesics in its phase space, when this space is
equipped with a suitable metric. As a consequence, a geo-
metric theory of chaotic dynamics emerges, becoming feasi-
ble a geometric interpretation of such systems [1].

The pioneering works on geodesic coding in hyperbolic
spaces developed by Morse and Koëbe is still worth of the
attention of mathematicians. In this direction, Series [2] and
Adler and Flatto [3] propose a geodesic coding procedure
based on the relationship identified by Bowen and Series
[4] between the geodesic flow on a compact surface of con-
stant negative curvature and the interval map defined by the
Markovian partition of the Poincaré disc boundary; and relate
their associated symbolic dynamics. The previous works ex-
plore the properties and interrelationships existing between
these systems as for instance the use of ergodicity of the in-
terval maps to prove ergodicity of geodesic flows and con-
versely; explicit formulas for invariant measures of interval
maps from invariant measures for flows were also developed
in these works.

Our aim is to apply the geodesic coding method proposed
by Adler and Flatto in the analysis of dynamical systems tak-
ing into consideration their interpretation as geometric and
topological structures. As a consequence, the characteristics
of the geodesic coding and its capacity to convey information
are established.

2. HYPERBOLIC FLOW AND GEODESIC CODING

The geodesic flow taken into consideration exists on a hy-
perbolic surface S of genus g. This surface has a planar de-
scription in the Poincaré disc D as a hyperbolic polygon (the
fundamental region F) whose edges are “glued” by a spe-

Figure 1 – Planar representation F of a surface S.

cific set of isometries T (considering the hyperbolic metric)
in D. T is finite and each of its elements glues an associ-
ated pair of edges of F. This is illustrated in Figure 1, where
the inner solid lines form the region F and T1 is an element
of T pairing the edges 1 and 7. The vertical and horizon-
tal dashed straight lines show the edge-pairings of F by the
isometries in T. For the proposed coding procedure, poly-
gons with 8g − 4 edges are considered. Figure 1 illustrates
a polygonal region with 12 edges which is associated with a
bi-torus, a surface of genus g = 2.

The analysis of the geodesic flow on S is done by consid-
ering a Poincaré map f defined by the elements of T (f = Ti

over the edge i of F) and the Poincaré section is determined
by the image of the edges of F over S by the gluing process.

A tessellation of D, the union of non-overlapping images
of F meeting only at vertex or edge, can be obtained by ap-
plying every possible isometry generated by finite concatena-
tion of elements of T to the region F. An example is shown
in Figure 2, where part of F is shown, and adjacent to F the
image of F by the application of an isometry Ti on F, which



Figure 2 – Coding method.

is indicated with the label T−1
i F. The regions F and T−1

i F
have the same hyperbolic metric properties, however under
a Euclidean perspective an exponential reduction of lengths
and areas are observed. This fact is used to coding the ex-
treme points ξ (forward) and η (backward) of a geodesic γ in
D, see Figure 2.

The coding process is similar to the binary expansion of
the points in the unit interval [0, 1) by the piecewise linear
map f(x) = (2x), where (α) denotes the fractional part of
α. For this simple case, the subintervals [0, 1

2 ) and [ 12 , 1)
form a Markov partition of [0, 1). Similarly, a Markov par-
tition is induced in the boundary S1 of D by extending (the
dashed lines shown in Figure 1) the edges of F to S1. The
symbols i1 and i2, 1 ≤ i ≤ 8g−4 (for the case 8g−4 = 12)
are the labels of the partition intervals. The interval map is
given by the isometries in T, where f(x) = Ti(x) if x is in
the edge i of F or the corresponding region of the Poincaré
section of S. Consider Figure 2. Let the region F be the
reference after the n-th application of the transition map f ,
n ∈ Z. Since the partition interval where the forward point
ξ of the geodesic γ defined by ξ, η lies is i2, it follows that
if w = . . . w−1w0w1w2 . . . is the bi-infinite codeword of γ,
then wn = i2. For the next step, the region of the tessel-
lation of D defining the partition of the interval i2 of S1 is
T−1

i F due to the fact that the geodesic enters this region af-
ter leaving F by crossing the edge i. Now, either ξ belongs to
the interval j1 or to the interval j2 of the partition defined by
T−1

i F in the previous defined region i2, thus wn+1 is equal
to j1 or j2, depending on the region where ξ belongs. The
same idea follows for the expansion of both extremes of the
geodesics ξ and η, and the concatenation of these expansions
determines the bi-infinite code sequence of the geodesic.

The space of sequences coding the geodesics forms a shift
space X (see [3]). In fact, X is a Markov shift with possible
transitions given by (1).

T :


i1 → (σ(i) + 1)2, (σ(i) + 2)1.
i2 → (σ(i) + 2)2, (σ(i) + 3)1, . . . ,

(σ(i)− 2)1, (σ(i)− 2)2.
(1)

where

σ(i) =

{
4g − i mod (8g − 4), i odd,
2− i mod (8g − 4), i even.

3. RESULTS

Knowing the properties of a set of code sequences is a
first step in the analysis of the characteristics of a code. With
the purpose of applying the geometric and algebraic proper-
ties of hyperbolic manifolds to analyze dynamical systems,
through the symbolic sequences coding the geodesics of a
hyperbolic manyfold, we determine two characteristics of the
set of symbolic sequences. The first characteristic is associ-
ated with a general aspect of the set of sequences, and specify
(as a function of the genus of S) the maximum full-shift em-
bedded in the shift space generated by the geodesic coding
process. This result is established in Theorem 1.

Theorem 1. The cardinality |Σ| of the alphabet of the max-
imum full-shift embedded in the shift space X is equal to
4(g − 1).

The second characteristic considers a bound on the coding
design, that is, the maximum capacity to convey information
through the set of code sequences. This result is stated in
Theorem 2. This capacity is known as the topological en-
tropy of the shift space (see [5]).

Theorem 2. The topological entropy of the symbolic dynam-
ical system X as a function of the genus g of the surface as-
sociated with a regular fundamental region F with (8g − 4)
edges, is given by

h(X) = log

[
(4g − 3) +

√
(4g − 3)2 − 1

]
.
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