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Abstract—By developing a general formulation described by a 

system of ordinary differential equations in the time domain, the 

present work examines filtering and transmission processes that 

occur in doubly periodic LC transmission lines. The formulation 

developed herein allows to include an arbitrary number of 

sections, where even and odd numbered sections are identified by 

two sets of reactive elements {L2, C2} and {L1, C1}, respectively. It 

is shown that lumped-element transmission lines exhibit strong 

spatial dispersion whereby each line node shows a distinct 

frequency spectrum. Numerical results by considering inductors 

and capacitors with typical values of 1H and 1F and driving 

rectangular pulses of 5-s width are given and discussed by 

highlighting the spatial filtering features that occur on such LC 

lines.   

Keywords—doubly periodic transmission lines; lumped- 

element circuits; spatial dispersion 

 

I.  INTRODUCTION  

With the continuous increase of operating frequencies of 
modern high-speed integrated circuits, accurate transmission 
line models are required to quantify the propagation delay 
between devices, manage transmission line reflections and 
crosstalks, besides reducing signal losses. As most electronic 
devices are time-varying and nonlinear, the analysis of these 
systems must be performed in the time domain. Analysis in 
the time domain is also important to predict the transient 
behavior of power lines excited by external electromagnetic 
fields produced, for instance, by lightning strokes or by 
disruptions such as short circuits [1],[2]. In fact, when the 
system elements are time varying and/or nonlinear, solving the 
overall network in the frequency domain serves no purpose. 

The primary use of transmission lines is to transmit RF 
power between locations separated by distances comparable to 
a quarter wavelength. Transmission LC line models include a 
cascade of distributed elements consisting of series 
inductances and shunt capacitances with loss resistances and 
conductances and require a large number of elements and 
internal nodes to be accurate. When the wires are much shorter 
than a quarter wavelength, the time lag between the sending 
and receiving ends will be a small portion of cycle and the 
system can be analyzed by circuit theory. Expressed in terms 

of wavelength, any interconnection of circuit elements that is 
small compared with the wavelength associated with the 
highest frequency of interest is called lumped circuit [3]-[5]. 
As long as this restriction on the size of the circuit holds, the 
Kirchhoff voltage and current laws are valid, since this 
restriction reflects the fact that Kirchhoff’s laws are 
approximations of Maxwell’s equations. 

While the continuous transmission line is described by 
time-invariant partial differential equations of the hyperbolic 
type, the lumped circuit equations are ordinary differential 
equations, which  in general are time varying and nonlinear. In 
light of this, the present work is concerned with the time-
domain analysis of lumped transmission LC lines. The 
configuration of the lines considered here consists of cascade 
LC cells building up a discrete electrical network of an 
arbitrary number of unit cells. A system of ordinary 
differential equations in the time domain is developed in a 
general formulation where each lumped element in a given 
section k is assigned with arbitrary, values Lk or Ck. The study 
is focused on the propagation characteristics of doubly 
periodic transmission LC lines, where odd-numbered sections 
has a pair of elements identified by L1 and C1, and even 
sections have a pair {L2, C2}. In the assignment of the reactive 
elements, two cases are considered. In the first, the line is 
composed with elements L1C1 = L2C2, so that the transit time 

LC  is the same along every unit cell in the doubly 

periodic transmission line. In the second case, L1/C1 = L2/C2 
for which all the sections have the same characteristic 

impedance CL / . Various situations are examined by both 

varying the number of sections and the width of the input 
rectangular pulse which drives the line. 

It is shown that the doubly periodic line exhibits important 
properties mainly those related with its spatial filtering ability, 
which constitutes the main contribution of the work as will be 
discussed in the next sections.    

 

II. CIRCUIT EQUATIONS 

A. Periodic LC Transmission Line without Load 

Fig.1 shows a generalized LC line without load, where the 
state variables are the mesh current Ik flowing in the inductor 



Lk and the corresponding charge Qk stored in the capacitor Ck 
in section k [6]-[8]. It is important from the numerical 
standpoint that the state variables {Ik, Qk} are taken so that the 
differential equations are all first order. Losses are also 
considered by including the inductor resistance RL,k, a series 
resistance RC,k for the capacitor, and the resistance Rs of the 
voltage source. 

 

Fig. 1. Unloaded LC ladder network with N sections. 

 

We begin by referring to an unloaded line with only three 
sections as shown in Fig. 2. 

 

Fig. 2. LC circuit with three sections. 

 

For each section, the Kirchhoff voltage and current laws 
are applied to the meshes and at the nodes to give 
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where V1 (t), V2 (t) and V3 (t) are the voltages at the nodes and 
I1 (t), I2 (t) and I3 (t) the mesh currents. 

Since 
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combining (1) and (2) yields the following system of ordinary 
differential equations with Ik and Qk as output variables: 
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To generalize a system of equations for an arbitrary 
number of unit cells, separate coupled equations are written 
for three kinds of sections: 

a) Starting section; 
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where k = 1 and Vs the input voltage, which can be a 
sinusoidal signal or a pulse of arbitrary shape, either 
rectangular, triangular or a Gaussian modulated pulse. 

b) Intermediate section; 
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c) Ending section; 
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B. Periodic LC Transmission Line with Load 

 

Fig. 3. Loaded LC line with N sections. 

A loaded LC line with an arbitrary number of sections is 
shown in Fig. 3, and analogously to the procedure previously 
developed we arrive at the following equations: 

a) Starting section; 
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b) Intermediate section; 
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c) Penultimate section; 
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d) Ending section; 
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III. RESULTS 

In the investigation of frequency response and filtering 
characteristics of the periodic line, we first look at low-loss 
(RL = RC = 0.001 Ω; Rs = 0.1 Ω) and 10-section line driven by 
a 1-V amplitude sinusoidal signal. Singly periodic 

(conventional) LC line is assigned with L1 = 1 H and C1 = 1 

F, while the doubly periodic lines are specified for two cases: 

with {L2 = 2H, C2 = 1/2F} or {L2 = 2H, C2 = 2F} in the 

even-numbered sections and with {L1 = 1 H, C1 = 1 F} in 
the odd sections. 

The frequency response of the conventional LC line is 
illustrated in Fig. 4(a) and, as expected, the line behaves as a 
low-frequency pass filter, in which the critical frequency is 

determined by kHzCLfc 0.320/1 111   . The response 

curve clearly shows the discrete nature of the 10-section line, 
by noticing ten resonant peaks where the separation between 
adjacent peaks decreases progressively toward the critical 
frequency, thus demonstrating that dispersive effects become 
stronger as fc1 is approached. On the far left side of the 
frequency band (f < 50 kHz) the oscillations turned out 
smooth, indicating that the periodic network behaves as a 
homogenous line. 

Analyzing Figs. 4(a)-4(e), it is seen that the frequency 
response of the doubly periodic line greatly differs from that 
of the conventional line. We verify the presence of a band gap 
separating five peaks to the left and five to the right. In the 
case L1C1 = L2C2 [Figs. 4(b) and 4(d)] there appears a new 

critical frequency kHzfc 0.2262/1   at the end of the first 

passband, with the second passband extending up to 340.0 
kHz. In the second case where L1/C1 = L2/C2 [Figs. 4(c) and 

4(e)] the first passband goes up to kHzfc 0.1132/2  , 

where 222c CL/1f   with the second one starting at 

2/f~ 1c . Fig. 4 also demonstrates that the width of the 

pasbands is independent of the characteristic impedance C/L

, which has, however, a strong effect on the height of the 
resonance peaks, as it is clearly apparent in the impedance-
mismatched case in Fig. 4(e). 

 

 

 

 

 

Fig. 4. Signal spectrum at node #10 of LC lines: (a) Singly conventional 

periodic line with L1= 1 H, C1 = 1 µF and Rload = 1 Ω; (b) Doubly periodic 

line with L2 = 2 µH, C2 = 0.5 µF and Rload = 1 Ω; (c) Doubly periodic with L2 
= 2 µH, C2 = 2 µF and Rload = 1 Ω; (d) Doubly periodic with L2 = 2 µH, C2 = 

0.5 µF and Rload = 2 Ω; (e) Doubly periodic with L2 = 2 µH, C2 = 2 µF and 

Rload = 2 Ω. 

(b) 

(d) 



The transmission and reflection characteristics of the LC 
networks were investigated by sending through the line a 40-

s-width pulse; the width of 40s was selected so that the 
harmonic content of the input pulse could not be strongly 
attenuated during its travel along low-loss (RL = RC = 0.001 Ω; 
Rs = 0.1 Ω) and 200-section lines with critical frequencies 
~110 kHz. 

We first refer to a conventional unloaded line, for which 

the transit time across each section is s1CL 11  . It is seen in 

Fig. 5(a) that the reflected pulse returns back to node #2 after a 

time delay of 400 s, corresponding to a round-trip time of 

2x200 s. The distortion on the pulse arises from line 
mismatching, which is also translated in the frequency 
spectrum in Fig. 5(b). 

   

Fig. 5. Signal at node #2 of a singly periodic LC line with L1 =1 µH, C1 = 1 
µF and Rload = 1 Ω, (a) Transient response and (b) Fourier spectrum.  

Figs. 6 and 7 show transmitted and reflected pulses 
calculated at nodes #100 and #200; the pulse reflected from 
the load preserves its shape, while the pulse reflected off the 
sending end emerges with negative amplitude slightly 
attenuated (third pulse from the left in Fig. 6 and the inverted 
pulse in Fig. 7). In this example, without resistive load and the 
line termination being reactive, the reflection coefficient has a 
unity magnitude, but with a phase shift associated with the 
reactive ends. In this way, the pulse is completely reflected at 
the termination of the line with no energy dissipation.  

 

Fig. 6. Transient response at node #100 of a singly periodic LC line 

 with L1 =1 H and  C1 = 1 µF. 

 

 

Fig. 7. Transient response at node #200 of a singly periodic LC line 

 with L1 =1 H and  C1 = 1 µF. 

 
 

In the following, looking upon the transmission of the 40-

s pulse along the doubly periodic line with L1C1 = L2C2 and 
loaded with a 1-Ω resistance, we verify in Fig. 8 the 
occurrence of reflected pulses. Now loading the line with a 2-
Ω resistance (the characteristic impedance of a singly periodic 

line with L2 = 2 H, C2 = 2 F), reflections at both ends still 
persist, as illustrated in Fig. 9, where the reflected pulses have 
polarity opposite of the corresponding pulses in Fig. 8. But 
implementing a line, with L1/C1 = L2/C2 terminated with the 

matching resistance of  22 C/L1   , we see in Fig. 10 that 

reflections are essentially suppressed in this example; notice 
also that the transit time for the pulse to reach node #200 

increases to 282.0 s [Fig. 10(b)]. 

 

Fig. 8. Rectangular 40-µs pulse transmitted through a doubly periodic LC 

line with L2 = 2 µH, C2 = 0.5 µF and Rload = 1 Ω: (a) Transient response at 

node #100 and (b) transient response at node #200. 
 

 

 

Fig. 9. The same as in Fig. 8 but with Rload = 2 Ω.  
 

 

Fig. 10. The same as in Fig. 8 but with L2/C2=L1/C1 (L2 = 2 µH; C2 = 2 µF).  

 

To investigate the filtering properties of the doubly 

periodic line, we now consider a 5-s rectangular pulse such 
that its Fourier spectrum has multiple sidelobes with width of 
200 kHz to encompass the critical frequencies of 320 kHz and 
160 kHz as discussed in Fig. 4. Regarding the line with L1C1 = 
L2C2, then we see in Fig. 11 that the spectrum of the 
transmitted pulse exhibits different features at each node. For 
example, in Figs. 11(a) and 11(b), corresponding to nodes #2 
and #10, there appears in the first sidelobe an isolated 
passband which is progressively narrowed as the order of the 
node increases. This phenomenon is interpreted as a local 
effect at each node, which can be identified as a process that 
controls the level of filtering. Such a mechanism also 
manifests itself in the line with L1/C1 = L2/C2 (Fig. 12), but in 
this case the main lobe is sharply cutoff at 160 kHz.  



 

Fig. 11. Spatial filtering in a doubly periodic line with L2 = 2 µH, C2 = 0.5 µF 
and Rload = 1 Ω: (a) at node #2, (b) at node #10, (c) at node #100, and (d) 

at node #200. 
  

 

Fig. 12. The same as in Fig. 11, but with L2/C2=L1/C1 (L2 = 2 µH; C2 = 2 µF). 
 

IV. CONCLUSION 

A transient and frequency-response analysis of discrete LC 
transmission lines was performed by formulating a system of 
generalized circuit equations in the time domain for the 
lumped elements of an LC ladder network. The system of 
differential equations was numerically solved with given 

initial conditions for the distributions of charge of the 
capacitors and the currents through the inductors. 

In investigating the filtering properties of the doubly 
periodic LC line driven by a rectangular pulse, it was found 
that an isolated frequency passband in the Fourier spectrum 
becomes progressively narrowed toward the end of the line.  

In comparison with a singly periodic LC line, this 
phenomenon arises from the fact that the number of degrees of 
freedom of the doubly periodic line is doubled, and hence 
there appear twice as many branches separated by a band gap 
in the frequency spectrum.   
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