
A Proposal for Native Java Language Support for 

Handling Asynchronous Events 

Carlos Rafael Gimenes das Neves¹, Eduardo Martins Guerra¹ and 

Clovis Torres Fernandes¹ 

¹ Instituto Tecnológico de Aeronáutica – ITA, Computer Science Department, 

São Paulo, Brazil 
{carlosrafael.prog, guerraem}@gmail.com, clovistf@uol.com.br 

Abstract. During early stages of developing computer software, depending on 

the employed methodology, developers usually create the application’s initial 

skeleton based on previously gathered requirements and on generated diagrams. 

When counting purely on what is provided by languages such as Java, develop-

ers tend to come up only with synchronous method calls, making use of coding 

tricks to achieve asynchronous behavior, which usually disrupts the original 

system model by adding a series of undesired side-effects such as unnecessary 

class coupling and error-prone constructions. This work proposed an extension 

to the Java language to allow for both executing asynchronous methods and 

handling asynchronous events occurring during normal execution, as a straight-

forward, class coupling-free and native alternative. With this extension it is ex-

pected that developers can natively use asynchronous communication from the 

beginning of the development cycle without having to make structural modifi-

cations to the original system. 

Keywords: Asynchronous Event Handling, Language Structures, Compilers, 

Event Oriented Programming, Exception Handling 

1 Introduction 

Developing computer software is a task often performed with the aid of software 

methodologies and techniques that aim at providing developers with some level of 

ease and confidence. Along with that, code generation tools have recently become a 

more and more common choice for developers willing an extra level of confidence 

and convenience. In this scenario, asynchronous execution and communication is not 

a worry, as the tool would be in charge of it should it be necessary. Nonetheless, when 

only languages features can be used, considering the Java language, asynchronous 

execution and communication usually push developers towards solutions involving 

creation of new classes or interfaces not present in the original model, together with 

unplanned implementations and undesired class coupling, adding unnecessary com-

plexity to both development and testing processes. 

There is a series of commercial frameworks, for example Akka framework [1] and 

JMS API [2], deal with these complexities and provide developers with means to 

mailto:carlosrafael.prog
mailto:guerraem%7D@gmail.com
mailto:clovistf@uol.com.br


achieve asynchronous execution and communication without too much effort. This 

topic is also the target of many academic works, such as JR Language, which propos-

es an extension to the Java language, making it a more suitable language for asyn-

chronous communication and execution [3]. 

In spite of all the benefits brought by these works, some failed to deliver a trans-

parent solution to developers [1-3], forcing them to change the original software mod-

el in some way, either implementing extra code or changing the original class hierar-

chy, in order to actually obtain the asynchronous behavior. On the other hand, others 

took care only of communication issues, even with first-class constructs, but left 

asynchronism aside [4]. Most of them also required the sender of an asynchronous 

message to know the receiver, creating a possibly undesired coupling between sender 

and receiver [1-3]. 

Our aim was to fill the gap between these works, proposing means for developers 

to naturally use asynchronous execution and communication, through first-class 

constructs and specially without forcing them to implement extra code, to couple parts 

of the software and to change the original software model of the software. 

That behavior was achieved adding new language constructs to the Java language 

as well as creating a custom Java compiler capable of interpreting them. These new 

language constructs enable developers to easily add specific asynchronous behavior to 

the system without side-effects, as they act just as native structures do. Moreover, the 

fact that neither extra code nor changes to the class hierarchy are required makes the 

resulting code more compliant to the original model, improving both code readability 

and faithfulness to the documentation where the system derives from. 

2 Characterizing the Research Problem 

A close inspection to a typical Java program shows that the native structures available 

for communication fall basically into two groups, namely, method calls and thrown 

exceptions [5], [6]. Both are first-class constructs that work with the call stack and 

present a synchronous behavior. Considering method calls and thrown exceptions as 

messages, the execution actually relies on first-class constructs for synchronous mes-

sage passing between methods in the call stack. Method calls differ from throwing 

exceptions, as the throwing of an exception makes the sender method terminate [5]. 

Existing tools and works regarding message-passing techniques present different 

approaches. Some provide asynchronous behavior, but force changes to the structure 

of existing classes, or require implementation of extra code [1-3]. Some come as first-

class constructs, but without the asynchronous behavior [4]. Coupling of the sender 

and the receiver is also present [1-3]. Access to the original call stack is also provided 

only by some of them [3], [4], [11], just as access to the original context [4], [5], [11]. 

Therefore, the main problem addressed in this work is how to allow code to exe-

cute asynchronously through first-class constructs, giving it the ability to both asyn-

chronously notify other methods in the call stack about the occurrence of general 

events and access the original context, without the need for interrupting the execution 

of the sender method, for coupling classes or for implementing extra interfaces. 



3 Proposed Solution 

One possible solution to the issue previously brought up would be creating extensions 

to the Java language, in order to provide first-class constructs for developers to handle 

asynchronous events, without implementing extra interfaces and without worrying 

about usual matters on asynchronous event handling, such as registration control and 

capture of the method’s context, namely, its closure [7]. 

Unlike the capture performed by Java up to version 1.7, which included only local 

variables marked as final [5], [6], which are immutable, the captured closure must be 

mutable. Moreover, it must be accessible from different threads at the same time, as 

the asynchronous method execution will be accomplished through the creation of 

several concurrent threads. 

Since in Java, a method’s closure is composed of both local variables and parame-

ters, capturing the closure and making it accessible from another thread means giving 

this other thread access to the memory area where that information is stored. Accord-

ing to the Java Virtual Machine specification [6], the memory is arranged similarly to 

the diagram in Fig. 1, with all local variables stored inside frames. 

New frames are created every time a method is called, and placed at the top of the 

stack. Frames are destroyed and thus, lost, when its owner method terminates [6]. No 

method, from any thread, can access frames directly, either before or after the frame’s 

destruction. 

The only way to access frames during runtime is through tools such as the Java 

Virtual Machine Tool Interface or the Java Debug Interface, both part of the Java 

Platform Debugger Architecture [8]. Nevertheless, there are three important reasons 

to avoid using these tools in the solution. First, there is no guarantee that these tools 

 

Fig. 1. Simplified internal memory distribution of the Java Virtual Machine 

Java Virtual Machine 

Thread 1

Stack

Program Counter

Frame 0

Frame 1

Frame n (Current)
Local variables, results,

return value...

Stack for native methods

Method Area

Constants, field data, method code…

Thread 2

.

.

.

Heap

Thread n...

 



will be part of all platforms where Java is supported. Also, the thread must be in a 

suspended state to have its frames available for inspection. Last, using those tools 

involves writing some native code, removing the portability of the solution. 

For the solution to be portable it should only make use of native Java commands 

and structures. Since the traditional Java compiler is capable of capturing only local 

variables marked as final, in order to capture all local variables while keeping then 

mutable, the solution would be to move them into a local class, similar to what has 

been done in [9]. This local class has one single local instance marked as final, capa-

ble of being captured by the traditional Java compiler. Since parameters cannot be 

moved, they are actually copied into the local class. 

Then, all their references are replaced with references to the fields of this newly 

created class, as shown in Fig. 2. As a consequence of those changes, inline variable 

initializers must be moved to their own line. Variables and parameters that are marked 

as final can be left just as they are, since traditional Java compilers can already cap-

ture them. 

Original Method 

String m1(int p) { 

 final String f = 

  "..."; 

 String s = 

  p.toString(); 

 s += f; 

 return s; 

} 

Modified Method 

String m1(int p) { 

 class Closure { 

  int p; 

  String s; 

  Closure(int p) { 

   this.p = p; 

  } 

 } 

 final Closure c = new Closure(p); 

 final String f = "..."; 

 c.s = c.p.toString(); 

 c.s += f; 

 return c.s; 

} 

Fig. 2. Code modification to allow the method’s closure to be properly captured 

Although that technique does enable the closure to be captured, it is just a part of the 

solution being proposed. In order to actually solve the problem, this technique must 

be performed automatically, while still allowing methods in the call stack to com-

municate asynchronously through first-class constructs, which involves adding new 

language constructs to the Java language. There are many tools available to help in 

the creation of extended Java compilers, capable of generating standard Java 

Bytecode, executable in any standard Java Virtual Machine. Among all the available 

tools, JastAddJ [10] was chosen due to its relative simplicity and powerful reference 

attribute grammars. 

Using JastAddJ, seven new language constructs were added to the Java language. 

They form structures that are translated into ordinary Java code referencing existing 

precompiled helper classes that are responsible for simulating the expected behavior. 



One language construct, within, is used to specify regions in the code where to 

monitor the occurrence of events, similar to what try statements do in plain Java. It is 

used together with two other language constructs, when and xwhen, which specify the 

code that is to be asynchronously executed when a particular event happens inside the 

region delimited by within. The difference between when and xwhen is that the latter 

serializes simultaneous executions while the former allows as many concurrent execu-

tions as necessary. Both language constructs are analogous to the catch clause of the 

Java language. The third language construct added was event, used for asynchronous 

event notification, similar to what throw statements do in plain Java with exceptions. 

With these four language constructs, developers are able to produce general event 

notifications, to specify the region where events are monitored and to asynchronously 

handle these events, using first-class constructs without implementing extra interfaces 

or dealing with any kind of registration control. 

Another language construct, arun, was added to provide developers with means to 

run ordinary asynchronous code unconditionally, while still allowing events occurred 

during this asynchronous execution to be properly handled by previous when and 

xwhen blocks. The last two constructs, handlerStack and currentHandlerStack, were 

added to allow event notifications to be properly handled in scenarios where code 

must be run asynchronously but arun cannot be used, such as when new threads must 

be explicitly created by the developer. 

3.1 when, within and event Constructs 

The when, within and event language constructs constitute the foundation of the pro-

posed solution. A within statement behaves similarly to what an ordinary try state-

ment does [5]. It is used to determine the region where to monitor the occurrence of 

events. Any methods called in the within block are also monitored, as well as the 

methods called inside those methods and so on. One or more when clauses must pre-

cede a within statement to specify the behavior for each event that the developer 

wishes to monitor the occurrences. 

A when clause behaves like an ordinary catch clause [5], specifying what code to 

execute upon the occurrence of an event of a particular class. Unlike the catch clause 

that can be used only with the class Throwable or with its subclasses [5], there are no 

limitations to what classes can be used with a when clause giving developers greater 

flexibility and freeing them from changing the current class hierarchy in the system, 

just to be able to use that class as an event. Code inside when blocks always executes 

asynchronously. Also, if an event of class A is expected, but an event of class B is 

triggered, and B extends A, the when block expecting the event of type A is executed. 

Finally, the event statement is used like an ordinary throw statement, notifying the 

occurrence of an event. The main difference is that event statements do not interrupt 

or abort current method’s execution, as they execute asynchronously. One single 

event can trigger multiple when blocks, because unlike usual Java exceptions, that are 

propagated only until the first handler is found [5], events were defined to propagate 

to all suitable, currently active when handlers. 



Actual exceptions thrown in a within block are not automatically handled, and 

should be handled manually by the developer. On the other hand, in order to address 

the issues of handling exceptions in asynchronous environments [11], it has been 

stipulated that if an exception is thrown during the asynchronous execution of a when 

block, and the developer does not catch that exception inside the block, the exception 

is transformed into an this event is notified so that it could be handled by other when 

blocks expecting that exception or one of the exception’s super-classes. 

3.2 xwhen Construct 

We can use the xwhen clause for replacing a when clause, to indicate that no more 

than one simultaneous execution of that block can exist. When an event triggers a 

when block and that block is already executing, another execution of that block starts. 

On the other hand, when an event triggers an xwhen block and that block is already 

executing, the notification is queued, and the block executes again only after having 

finished the present execution. 

3.3 arun Construct 

The arun statement is used to asynchronously execute a block of code. What differs 

using arun and running another thread is that events occurring inside the arun block 

are propagated to the handlers present in the stack, while a new ordinary thread will 

have an empty stack of handlers. 

3.4 handlerStack and currentHandlerStack Constructs 

Since all event notifications are propagated to the current stack, should developers 

need to manually create a new thread, in situations where arun cannot be used, that 

new thread will have a new blank stack of its own, and any events occurred there will 

not be propagated to the stack of the method creating that thread. The new primitive 

data type handlerStack and the statement currentHandlerStack have been created for 

this kind of situation. The currentHandlerStack statement allows developers to obtain 

a copy of the current stack of handlers and to use that copy as the target of an event 

notification or as the initial stack used for an execution of an arun block. The new 

data type handlerStack is the data type of the copies of the current stack. 

4 Implementation Details 

As the solution introduces seven new constructs to the Java language, it is necessary 

to demonstrate what happens behind those constructs, specially the aspects regarding 

their inner workings, such as how they are converted into normal Java code and how 

they interact with the precompiled helper classes. Although not all these helper clas-

ses are explained in this work for brevity, the behavior of the main class referenced by 

the transformed code, the Manager class, is explained with some detail. 



4.1 when, within and event Constructs 

After having defined the behavior of when, within and event constructs, the following 

code snippet helps clarify their basic usage. 

class A { 

 void m1() { 

  when (Event e) { 

   m3(); //Code to handle events of class Event 

  } when (Event2 e2) { 

   m4(); //Code to handle events of class Event2 

  } within { 

   m2(); 

  } 

 } 

 void m2() { 

  event new Event(); 

  m5(); 

 } 

 void m3() { event new Event2(); } 

 void m4() {...} 

 void m5() {...} 

} 

[Sample code demonstrating the usage of within, when and event constructs] 

As it can be seen in the diagram illustrated in Fig. 3, the eventual notification of the 

event of type Event in m2( ) triggers one of the when blocks inside m1( ); in fact, the 

first when block inside m1( ), which includes only a call to the method m3( ). There-

fore, that block is executed asynchronously on a new thread, even though m1( ) is not 

the current method on the call stack of the thread where the notification occurs; the 

current method is m2( ). By the time m3( ) executes and eventually notifies about the 

occurrence of event of type Event2, there is no guarantee whether m1( ) will still be in 

its corresponding call stack, which does not matter, as the when block for Event2 is 

triggered and method m4( ) is executed even if m1( ) has already terminated.  

 

Fig. 3. Block diagram showing the execution of the sample code using within, when and event 

m3

when block

in m1m1

m2

m5

Event

m4

when block

in m1Event2

 



Events occurring in one when block of a given method are seen as if occurring in its 

companion within block, below it. Consequently, these events can trigger any when 

blocks above that within block, as well as other when blocks that were registered in 

the stack at the time the within block started executing. This behavior can be better 

understood by looking at the following code. 

class A { 

 void m1() { 

  when (Event e) { m4(); } 

  when (Event2 e) { m6(); } 

  within { m2(); } 

 } 

 void m2() { 

  when (Event e) { m5(); } 

  when (Event2 e) { m7(); } 

  within { m3(); } 

 } 

 void m3() { event new Event(); } 

 void m4() {...} 

 void m5() { event new Event2(); } 

 void m6() {...} 

 void m7() {...} 

} 

[Sample code demonstrating the behavior of within and when in more detail] 

Assuming that the execution starts with a call to method m1( ), method m2( ) is the 

next one to be called, followed by a call to method m3( ), which eventually notifies 

about the occurrence of the event of type Event. That notification triggers the when 

blocks in m1( ) and in m2( ), and the methods m4( ) and m5( ) are called. Once m5( ) 

is called, the event of type Event2 ultimately occurs, triggering the second when 

blocks in m1( ) and in m2( ), finally causing methods m6( ) and m7( ) to be called. 

Again, all this behavior is thanks to the precompiled helper classes referenced by 

the transformed code, presented in Fig. 4. The transformation does not actually 

change the source files, it just changes the abstract syntax tree generated by JastAddJ 

before the code is actually compiled [10]. 

4.2 xwhen Construct 

As already explained, the behavior of xwhen is different in comparison with the be-

havior of when clauses. In spite of that, there are not too many differences in the 

transformed code, except for the first parameter of the method append( ), shown in 

Fig. 4, which is changed from true to false, telling the helper class Manager to change 

the execution behavior during runtime. 

 

 



Original Code 

void m1(int p) { 

 int a = 0; 

 when (Event e) { 

  a += p; 

 } within { 

  a = 10; 

  m2(); 

 } 

} 

void m2() { 

 event new Event(); 

} 

Transformed Code 

void m1(int p) { 

 class Closure { 

  int p, a; 

  Closure(int p) { this.p = p; } 

 } 

 final Closure c = new Closure(p); 

 c.a = 0; 

 Manager.startAppending(); 

 try { 

  Manager.append(true, Event.class, 

   new Handler<Event>() { 

   public void handle(Event e) { 

    c.a += c.p; 

   }}); 

  Manager.endAppending(); 

  c.a = 10; 

  m2(); 

 } finally { Manager.rewind(); } 

} 

void m2() { Manager.notify(new 

Event()); } 

Fig. 4. Transformation applied to the code before compiling when, within and event constructs 

4.3 arun Construct 

The following snippet helps demonstrating the runtime behavior of arun blocks, as 

well as Fig. 5 shows what arun blocks look like after the code transformation. 

class A { 

 void m1() { 

  when (Event e) { m5(); } 

  within { m2(); } 

 } 

 void m2() { 

  arun { m3(); } 

  m5(); 

 } 

 void m3() { event new Event(); } 

 void m4() { ... } 

 void m5() { ... } 

} 

[Sample code demonstrating the behavior of arun blocks] 



Assuming that the execution starts with a call to method m1( ), method m2( ) is the 

next one to be called. There, the arun block is executed asynchronously, and the 

method m3( ) is called from another thread, which notifies about the occurrence of the 

event of type Event. That notification triggers the when block in m1( ) and the method 

m5( ) is called. 

Original Code 

void m1(int p) { 

 arun { 

  int a = p + 1; 

  m2(a); 

 } 

} 

void m2(int x) {...} 

Transformed Code 

void m1(int p) { 

 class Closure { 

  int p; 

  Closure(int p) { this.p = p; } 

 } 

 final Closure c = new Closure(p); 

 Manager.fork(new Runnable() { 

  public void run() { 

   int a = c.p + 1; 

   m2(a); 

  }}); 

} 

void m2(int x) {...} 

Fig. 5. Transformation applied to the code before compiling the arun construct 

When an actual exception is thrown during the asynchronous execution of an arun 

block, it is caught and transformed into an event that could be handled by a when 

block expecting that exception or one of its super-classes. 

4.4 handlerStack and currentHandlerStack Constructs 

The statement currentHandlerStack is translated into a simple call to a method of the 

Manager class which returns a copy of the current stack. The data type handlerStack 

is translated into a reference to a normal interface. The basic usage of handlerStack 

and currentHandlerStack constructs is demonstrated in the following code snippet. 

handlerStack cs = currentHandlerStack; 

event new Event() cs; 

arun cs { ... } 

[Sample code demonstrating the usage of handlerStack and currentHandlerStack] 

Once a copy of the stack is made, it can be used together with the event statement, 

forcing the event to be notified in the given stack, or it can be used with arun, forcing 

the given stack as the initial one used by arun. 



4.5 Precompiled Classes 

The code translation itself is not enough to give the desired behavior to the solution, 

as this requires some code to be executed. All this code necessary to bring life to the 

solution was encapsulated in precompiled helper classes. Instead of referencing many 

classes, it was decided to create the Manager class, and make it the only class refer-

enced by the transformed code, apart from the interface referenced by the 

handlerStack data type. 

The Manager class acts as a façade (kind of design pattern [12]) to the remaining 

precompiled helper classes, calling their methods as necessary. As this helper class is 

in charge of making the solution actually work during runtime, next we present an 

overview of its methods called in the transformed code shown in Fig. 4 and Fig. 5: 

 startAppending( ) – It creates an empty list of handlers and adds this list to the top 

of an internal stack of lists, which is maintained on a per thread basis using the 

concept of thread-locals variables [13]. 

 append( ) – It appends the handler to the list on the top of the current stack, speci-

fying the class of the event that the handler is prepared for. 

 endAppending( ) – It creates a copy of the current internal stack, propagating that 

copy to all handlers in the list at the top of the stack, so that events occurring dur-

ing the asynchronous execution of one of those handlers can be properly notified to 

other handlers in the current stack. 

 rewind( ) – It removes from the stack the list of handlers at the top of it. 

 notify( ) – It notifies all suitable handlers in the internal stack about the occurrence 

of an event, starting their asynchronous execution. 

5 Discussion 

Five discrete topics come out by dividing the problem discussed in this work: asyn-

chronous method execution, asynchronous event notification and handling, class cou-

pling, implementation of extra interfaces and ability to access the original call stack 

and context. All these five topics were addressed by the implementation previously 

explained. 

Asynchronous method execution is achieved through the arun first-class construct. 

It allows not only for methods to be executed asynchronously but also for any kind of 

structured code to be executed asynchronously. Once the arun block is executed it 

creates another thread, without developer’s interaction, to execute its contents and the 

code following the arun block continues as soon as this new thread starts. 

With event statements the developer can asynchronously notify about the occur-

rence of events as these statements do not block the execution of the current method. 

On the other end, with when blocks developers can asynchronously handle these 

events. The execution of one when block is not tied to the execution of any other 

when block, therefore, many when blocks can be executing at the same time. 

Class coupling is not a concern as the sender of an event communicates with all the 

handlers present in the call stack, independently of their class. Also, the handlers need 



not to know which class is responsible for generating an event, they should only care 

about the area of code where the desired event could happen. 

Implementation of extra interfaces is also not a concern for the developer, since all 

constructs provided by the solution are first-class constructs placed throughout the 

code along with other ordinary native structures, they do not require any changes to 

be applied to the declaration of the classes. 

The access to the original call stack is guaranteed by the automatic registration 

technique, shown in Fig. 4, which creates lists of registered handlers on a per thread 

basis. These lists are propagated to the new threads created by arun and when blocks, 

in such a way that the events triggered within those threads can be propagated to the 

original handlers. Last, the access to the original context is accomplished through the 

code transformation shown in Fig. 2 and Fig. 4, which encapsulates all local variables 

and parameters inside a local class, making them accessible from within the handlers. 

6 Related Works and Tools 

Asynchronous communication and asynchronous method execution is a fascinating 

broad topic. As such, it is issued by several academic works and commercial tools, 

some of which are discussed next. 

6.1 Akka Framework 

Akka [1] is a commercial Java framework focused on parallel and distributed compu-

ting, helping in the creation of highly scalable and fault tolerant applications, offering 

many features that extend beyond the scope covered by this work. The main interest 

in Akka is its message passing functionality. In a brief description, it is based on the 

concept of message passing between actors. Actors are the components that actually 

execute code in the system, similar but not equal to what classes are to object oriented 

programming, as it is possible to assign a different class to the role of one specific 

actor at different times [1]. 

Each actor has one mailbox where the messages are kept until they are processed 

and they do not need to reside on the same process in order to communicate. Moreo-

ver, their distribution can be hierarchical in such a way an actor can create other ac-

tors, delegate them tasks and supervise them [1]. 

Considering the sending of a message as an event and the handling of the message 

as the handling of the event, Akka provides the developer with asynchronous event 

handling and with many other features not covered by this work, such as asynchro-

nous execution and communication in physically distributed environments. Albeit 

there is no need for the classes to know each other, they must know the actor they 

want to send a message to, which can be seen as a type of coupling. Also, the frame-

work requires classes to extend one of the Actor classes provided in order to play the 

role of an actor, changing the original structure of the system. Last, because it is an 

external framework, upon which software can be developed, Akka does not behave as 

a first-class construct. 



6.2 Spring Framework / JMS 

Spring [14] is a commercial modular framework for developing software applications, 

which integrates with integrates with the Java Messaging System API, JMS API [2], 

in order to provide an asynchronous and flexible messaging system. JMS works based 

on two distinct models, Point-To-Point and Publish/Subscribe [2]. In the Point-To-

Point model there are message queues acting as mailboxes, where messages are sent 

to and retrieved from. In the Publish/Subscribe model, everyone interested in one 

topic subscribe to that topic, so they can receive all messages that are published under 

that topic. Since both message queues and topics implement one special interface, 

called Destination [2], the difference between the models becomes transparent for 

those accessing only the Destination interface. 

Considering the sending of a message as an event and the handling of the message 

as the handling of the event, Spring + JMS provides the developer with asynchronous 

event handling. Actually, the integration Spring + JMS offers a highly customizable 

platform for application development in many aspects that surpass the scope of this 

work. In spite of this fact, for the asynchronous event handling to work properly, the 

sender of the message must know the message’s destination, coupling sender and 

receiver. Yet, neither the sender nor the receiver make use of first-class constructs and 

any classes willing to receive messages must implement one extra interface in order to 

be able to do so. 

6.3 JR Language 

The JR language [3] is actually an extension to the Java language, adapted from the 

SR language [15], [16], aiming at providing better Java support to distributed and 

concurrent computing. As a part of that effort, the extension provides several features 

such as remote object creation, remote method invocation, and asynchronous message 

passing, among others. Its asynchronous message-passing model is based on new 

constructs introduced by the language, specially send and forward. 

The general format of the commands is as follows: 

send target.message(arguments) handler handlerObject; 

forward target.message(arguments) handler handlerObject; 

[General format of the send and forward commands in the JR language] 

Both send and forward commands send the given message to the target. But the 

forward command additionally delegates to the given method the obligation to return 

a value to its caller. The handler part of the command is used to indicate the object 

responsible for handling any exceptions that may occur during the asynchronous exe-

cution of the given method. In order to do so, that object must implement one handler 

method for each possible exception. 

Thereby, the JR language works with two different models of event handling, one 

for the exception handling and another one for the explicit messages. Its exception 

handling mechanism behaves synchronously and is similar to the native Java mecha-



nism, with the difference that it relies on methods to handle the exceptions, not on try-

catch clauses. In contrast, its asynchronous message-passing model provides a 

straightforward mechanism that uses first-class constructs and does not require the 

implementation of any extra interfaces. Yet, it still requires the sender of the message 

to know the receiver, coupling both classes. 

6.4 Robust Exception Handling in an Asynchronous Environment / ProActive 

Robust exception handling in an asynchronous environment proposes transparent 

means for handling exceptions occurred in asynchronous method calls [11], using 

regular Java constructs together with the tool ProActive [17]. The main idea is to 

actually throw the exception generated by the asynchronous method, if any, upon the 

first use of the object returned by the asynchronous method, similarly to what Java’s 

Future objects [18] do, but in a transparent fashion. If the object returned is not used 

within the try block, the exception is thrown at the end of the try block [11]. 

Similarly to the JR language, this work has two different models of event handling, 

one for the explicit messages, which is similar to the JR language model, and another 

for the exception handling, which, in turn, is analogous to the native Java one. As the 

explicit asynchronous message-passing model is analogous to the proposed by the JR 

language, it does provide means to communicate asynchronously using first-class 

constructs and without requiring the implementation of any extra interfaces, at the 

same time it still requires the sender to know the receiver, coupling both classes. 

6.5 Exception Handling with Resumption: Design and Implementation in 

Java 

Exception handling with resumption shows an alternative for the native Java excep-

tion handling model [4]. In this proposed model the method where the exception oc-

curs is not necessarily terminated. After the occurrence of the exception, the handler 

has a chance to try to solve the problem and propose a solution. If the solution is ac-

cepted by the originating method, then its execution continues. This behavior is 

achieved through the use of two new language constructs, resume, used within a catch 

block to try to propose a solution, and accept, used with throw clauses, to specify 

acceptable solutions for that particular exception. 

Although this work proposes a way to prevent terminating abruptly the execution 

of a method using first-class constructs and without any extra interfaces, its execution 

does get interrupted momentarily, as there is no kind of asynchronous behavior. Also, 

its entire notification model is to be used with exceptional conditions only, not with 

general events. 

 



7 Conclusion 

Asynchronous execution and event notification are truly fascinating topics that can be 

looked upon from different perspectives. This work proposes a slightly different form 

of viewing and dealing with those topics, focusing on asynchronous communication 

between methods in the call stack as well as their asynchronous execution. 

While the proposed solution does provide developers with clean, native means for 

methods to communicate asynchronously, without requiring them to implement extra 

interfaces, create unnecessary class coupling and control the registration of active 

event handlers manually, the final code that is actually executed adds several new 

classes to the program and makes extensive use of handler registration control, but as 

an automatic process. Even so, the final code neither changes the original classes’ 

hierarchy nor creates unnecessary coupling between them. 

Although the presented solution offers enough features to address the aforemen-

tioned problem, there is still plenty of room for future improvements and future works 

such as creating a multi-when version of the multi-catch present in the Java language 

[5] or even providing the developer with means for manually creating threads with 

custom-initialized stacks. Another possible improvement would be providing devel-

opers with means to help with synchronization issues and automatic mutual exclusion 

control of shared resources used inside when and arun blocks. 

References 

1. Typesafe Inc.: Akka Documentation 2.0. http://akka.io/docs/ (2011) 

2. Sun Microsystems: Java Message Service Specification 1.1. http://download.oracle.com/ 

otndocs/jcp/7195-jms-1.1-fr-spec-oth-JSpec/ (2002) 

3. Keen, A. W., Ge, T., Maris, J. T., Olsson, R. A.: JR: Flexible distributed programming in 

an extended Java. In: ACM Transactions on Programming Languages and Systems, pp. 

578-608. ACM, New York (2004) 

4. Gruler, A., Heinlein, C.: Exception handling with resumption: design and implementation 

in Java. In: Proceedings of the 2005 International Conference on Programming Languages 

and Compilers (PLC'05), pp. 165-171. Las Vegas (2005) 

5. Gosling, J., Joy, B., Steel, G., Bracha, G., Buckley, A.: The Java Language Specification, 

Java SE 7 Edition. http://docs.oracle.com/javase/specs/ (2011) 

6. Lindholm, T., Yellin, F., Bracha, G., Buckley, A.: The Java Virtual Machine Specification, 

Java SE 7 Edition. http://docs.oracle.com/javase/specs/ (2011) 

7. Krishnamurthi, S.: Programming Languages: Application and Interpretation. 

http://www.cs.brown.edu/~sk/Publications/Books/ProgLangs/ (2007) 

8. Oracle: Java Platform Debugger Architecture (JPDA). http://docs.oracle.com/javase/7/ 

docs/technotes/guides/jpda/ (2012) 

9. Heinlein, C.: Local Virtual Functions. In: Proceedings of NODe 2005, GSEM 2005, pp. 

129-144. Erfurt (2005) 

10. Ekman, T., Hedin, G.: The JastAdd Extensible Java Compiler. In: Proceedings of the 22nd 

Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, pp. 1-18. Montreal (2007) 

http://akka.io/docs/
http://download.oracle.com/%0botndocs/jcp/7195-jms-1.1-fr-spec-oth-JSpec/
http://download.oracle.com/%0botndocs/jcp/7195-jms-1.1-fr-spec-oth-JSpec/
http://docs.oracle.com/javase/specs/
http://docs.oracle.com/javase/specs/
http://www.cs.brown.edu/~sk/Publications/Books/ProgLangs/


11. Caromel, D., Chazarain, G.: Robust exception handling in an asynchronous environment. 

In ECOOP Workshop on Exception Handling in Object-Oriented Systems: Developing 

Systems that Handle Exceptions, number 05050 in Technical Reports - Laboratoire. 

Sophia Antipolis (2005) 

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable 

object-oriented software. Addison-Wesley Longman Publishing, Boston (1995) 

13. Oracle: ThreadLocal Class Documentation. http://docs.oracle.com/javase/7/docs/api/java/ 

lang/ThreadLocal.html (2012) 

14. Spring Source: Spring Framework 3.1. http://static.springsource.org/spring/docs/3.1.x/ 

spring-framework-reference/pdf/spring-framework-reference.pdf (2012) 

15. Olsson, R. A., Andrews, G. R., Coffin, M. H., Townsend, G. M.: SR: A Language for Par-

allel and Distributed Programming. The University of Arizona, Tucson (1992) 

16. Andrews, G. R., Olsson, R. A.: The SR programming language: concurrency in practice. 

Benjamin-Cummings Publishing, Redwood City (1993) 

17. ActiveEon: ProActive Parallel Suite. http://proactive.activeeon.com (2011) 

18. Oracle: Future Interface Documentation. http://docs.oracle.com/javase/7/docs/api/java/ 

util/concurrent/Future.html (2012) 

http://docs.oracle.com/javase/7/docs/api/java/%0blang/ThreadLocal.html
http://docs.oracle.com/javase/7/docs/api/java/%0blang/ThreadLocal.html
http://static.springsource.org/spring/docs/3.1.x/%0bspring-framework-reference/pdf/spring-framework-reference.pdf
http://static.springsource.org/spring/docs/3.1.x/%0bspring-framework-reference/pdf/spring-framework-reference.pdf
http://proactive.activeeon.com/
http://docs.oracle.com/javase/7/docs/api/java/%0butil/concurrent/Future.html
http://docs.oracle.com/javase/7/docs/api/java/%0butil/concurrent/Future.html

