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Luminescence properties of magnetic polarons in EuTe: Theoretical description and experiments in
magnetic fields up to 28 T
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The recent discovery of a polaron-associated zero phonon line in the band-edge photoluminescence of high
optical quality EuTe crystals opens up the prospect of answering long-standing questions about the polaron
internal structure, thermal stability, and generation efficiency. Here, a Schrödinger equation for the polaron was
formulated and resolved by using both variational and self-consistent methods. The theory is in good agreement
with measurements of the zero phonon line as a function of magnetic field and temperature, and it could be
applied to other polaronic systems. It is deduced that, in EuTe, at 0 K, a polaron carries a magnetic moment of
610μB , and its binding energy is 27 meV. However, this binding energy does not carry the usual meaning of
thermal stability, because it decreases drastically when the sample is warmed up. For instance, at T = 100 K, the
binding energy is already reduced to only 6 meV. The thermal destruction of a polaron is brought about by thermal
fluctuations of the spin lattice that suppress the electron’s self-energy. Photoluminescence excitation spectra of
EuTe demonstrate that the photogeneration of polarons becomes increasingly inefficient when the energy of the
pumping photon is increased above the band gap.
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I. INTRODUCTION

Europium telluride (EuTe) is an old-fashionable magnetic
semiconductor that has been investigated for many decades
[1–4]. The intrinsic source of magnetism in EuTe and other
europium chalcogenides is the large spin (S = 7/2) of the Eu
atom, which occupies all lattice sites of the crystal. Addition-
ally, EuTe is optically transparent in the red and infrared wave-
length ranges. The combination of huge magnetism and optical
transparency in a single material attracts device engineers still
today [5,6], but EuTe already raised technological interest
nearly half a century ago [7], when it became commercially
available. However, technological interest waned when it
was discovered that EuTe is an antiferromagnet with a very
low Néel temperature (TN = 9.6 K), which is impractical
for device applications. Nevertheless, EuTe and other Eu
chalcogenides remain ideal magnetic systems that can be used
to test the principles of operation of spin-related devices [8],
and to investigate many-body physical phenomena, e.g., spin
waves [9] and magnetic polarons [2,4,10–14].

Despite the long research history, only recently it was
demonstrated how light can be used to induce a magnetic
moment in EuTe, through the photocreation of magnetic po-
larons [15]. In Ref. [15], a narrow PL emission associated with
a pure electronic transition was discovered, a so-called zero
phonon line (ZPL). Is was demonstrated that the photoexcited
electron that produces the ZPL is dressed by a halo of canted
lattice spins, forming a magnetic polaron [16]. The experimen-
tal demonstration of magnetic polarons was done by using
EuTe epitaxial layers of very high chemical purity and few
structural defects, which became available in the last decade
when the modern molecular beam epitaxy (MBE) technique

began to be employed to grow EuTe crystals [17,18]. The
superior quality of EuTe grown by MBE is demonstrated by its
improved optical properties, e.g., new band-edge absorption of
unprecedent sharpness [17], narrow photoluminescence (PL)
lines at higher energies than ever seen before [18], novel
second-harmonic generation [19], and a rich spectrum of
magneto-refractive effects previously unknown [20]. Based on
these discoveries, it became possible to successfully describe
the EuTe band-edge electronic structure in the framework of
one-electron band theory [21,22], whose validity in rare-earth
oxides was questioned in the past [23] due to divergences
between theory and the experimental data available at the
time [24]. MBE can also be used to integrate Eu chalcogenides
into a silicon substrate and other III-V semiconductor struc-
tures [25,26], which enhances the prospects of using EuTe in
novel optospintronic devices.

The above-mentioned technical and scientific advances, and
above all the discovery of a polaron-related ZPL, open the
prospect of answering questions such as what is the internal
spin structure of the newly discovered polarons, how well may
they be modelled theoretically, how can polarons be generated
efficiently, what is the polaron binding energy, and how high in
temperature may the control of magnetic order, seen in EuTe at
helium temperatures [15], be taken? These are long-standing
fundamental questions; the answer to them is under debate or
even missing, despite the many of investigations already done.
The present investigation answers these questions on the basis
of a theoretical model and its confrontation with the results of
magneto-optical experiments on high-quality epitaxial layers
of EuTe, grown by the molecular beam epitaxy technique.
The theoretical model and its predictions are described in
Sec. II, technical experimental details are given in Sec. III,
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experimental results and comparison with theory are given in
Sec. IV, and conclusion presented in Sec. V.

II. MAGNETIC POLARON THEORY

A. Polaron Hamiltonian

If an electron is promoted from the valence band into the
conduction band through photon absorption in EuTe, prior to
radiative recombination the electron will relax into the lowest
possible state (dubbed “X state”) [15,18,27]. The exchange
interaction between the photoexcited electron in an X state
and the lattice spins (the Xf interaction) favors alignment of
all spins in a common direction and can be described by an
effective magnetic field BXf ∼ 1 T, which acts on the lattice
spins in the neighborhood of the photoexcited electron [15].
This effective magnetic field opposes the exchange interac-
tion between the lattice spins (the ff interaction), which is
antiferromagnetic [28]. If the Xf interaction overpowers the ff
one, then a magnetic polaron may be formed, which is when
the photoexcited electron breaks the natural antiferromagnetic
alignment in its vicinity, generating a local nonzero magnetic
moment. Magnetic polarons may also arise due to electrons
bound to impurities and defects, and it has been suggested
that they may be exploited to raise the critical temperature in
rare-earth ferromagnets [13,14].

To describe the localized photoexcited electron, the
envelope-wave-function approach [29] is employed. In an
isotropic crystal such as EuTe, the photoexcited electron
is described by a spherically symmetric envelope wave
function ψ(r), where r is the distance to the center of the
polaron.

The total energy of a photoexcited electron surrounded by a
cloud of canted lattice spins (measured in respect to the energy
of a free Bloch electron) is given by the sum

EPol = K + UCoul + EXf + Eff + EZ, (1)

where K represents the kinetic of the photoexcited electron,
UCoul is its Coulomb energy in the field of the photoexcited
hole,

EXf = −JXf S
∑

i

a3

4
|ψ(Ri)|2 sin φ(Ri) (2)

is the Xf energy [17,30] [JXf is the constant for the exchange
interaction between the photoexcited electron and the lattice
spins [15], S = 7

2 is the spin of an Eu atom, a is the EuTe
lattice parameter, Ri is the distance from the ith lattice spin to
the center of the polaron, φ(Ri) is the canting angle of the ith
lattice spin, as shown in Fig. 1],

Eff =
∑

i

12|J1 + J2|S2[sin2 φ(Ri) − b2] (3)

is the change in the lattice ff energy induced by the photoex-
cited electron [J1 and J2 are the first- and second-neighbor
ff exchange constants, respectively, b = B

BSAT
is the value of

sin φ(Ri) in the absence of the photoexcited electron, B �
BSAT is the absolute value of the applied magnetic field, BSAT

is the minimum external magnetic field required to impose
complete ferromagnetic order in the unperturbed lattice [31] ],

FIG. 1. (Color online) The two antiferromagnetic sublattices are
indicated by vectors S1 and S2, under the effect of the resultant
magnetic field, i.e., the superposition of an external field and the
exchange field of the photoexcited electron, indicated by vector s.
The lighter arrows indicate the sublattice spin orientation in the
absence of a photoexcited electron. The magnetic field acting on
the spins is assumed to be larger than the spin-flop field, and the
photoexcited electron is relaxed. At a given distance, Ri , to the polaron
center, both sublattices are tilted by the same angle φ with respect to
their unperturbed equilibrium orientation indicated by the horizontal
dashed line.

and

EZ = −gSμBSB
∑

i

[sin φ(Ri) − b] (4)

is the change in the Zeeman energy of the lattice spins, induced
by the photoexcited electron (gS = 2 is the gyromagnetic factor
for an Eu spin in the lattice and μB is Bohr’s magneton).
The Zeeman energy of the photoexcited electron itself, in
the range of fields considered here, is much smaller than
all other energies and will be ignored. It is assumed that the
effective magnetic field acting on the lattice spins is larger than
the spin-flop field BSF ∼ 0.08 T [32], hence the lattice spins
belonging to different sublattices are oriented symmetrically
to the effective field [15], as shown in Fig. 1. It is also assumed
that the spin of the photoexcited electron is relaxed [15,27],
meaning that the effective field BXf points in the direction of
the applied magnetic field, if one is present.

Last but not least, the canting angle is allowed to vary
continuously, which would be strictly valid only when S → ∞
but is a suitable approximation in the present case, considering
the large spin S = 7/2 of the Eu atoms [11].

Due to the spherical symmetry, φ(Ri) is constant for a
given radius Ri , and by minimizing Eff + EXf + EZ in respect
to sin φ(Ri), we find

sin φ(Ri) =
{

1 if A|ψ(Ri)|2 + b > 1
A|ψ(Ri)|2 + b otherwise,

(5)

where

A = JXf

96|J1 + J2|S a3.

By taking advantage of the continuum approximation [3],
whereby the discrete distribution of Eu spins in the crystal
lattice is replaced by a continuous one, with a density of spins
equal to 4/a3 characteristic of the face-centered cubic lattice,
the polaron problem can be formulated in terms of a very
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succinct Schrödinger equation. One writes

Eff + EXf + EZ =
∫ ∞

0
4πr2dr|ψ(r)|2VPol(r), (6)

and

EPol =
∫ ∞

0
4πr2drψ∗(r)HPolψ(r), (7)

where the Hamiltonian operator is given by

HPol = − �
2

2m∗r2

d

dr

(
r2 d

dr

)
− ke2

εr
+ VPol(r). (8)

The first term in Eq. (8) is the kinetic energy operator (m∗ is the
effective mass of the photoexcited electron), the second term is
the Coulomb interaction operator between the electron and the
photoexcited hole, which is screened by a dielectric constant
ε, and VPol(r) is the self-energy term, which unites the ff , Xf ,
and Zeeman energies [Eqs. (3), (2), and (4), respectively] in a
single compact and concise expression:

VPol(r) = −JXf S

{
1 − (1−b)2

2A|ψ(r)|2 , r � rc

1
2A|ψ(r)|2 + b otherwise,

(9)

where rc is the radius of the spherical ferromagnetic core at
the center of the polaron [i.e., the region where φ(r) ≡ π/2;
rc is determined by the condition A|ψ(rc)|2 + b = 1 or rc = 0
if this condition is never satisfied].

B. Ground state of the polaron

The ground state of the polaron is given by the minimum
energy solution of the Schrödinger equation

HPolψ(r) = EPolψ(r). (10)

The Schrödinger equation must be solved by using the
self-consistent method [33] because the confining potential
VPol(r) is dependent on the wave function, as Eq. (9) shows.
Alternatively, an approximate solution can be found by using
the variational method. Although less accurate, the variational
method has the advantage of producing a fully analytical
solution. In this paper both solutions are presented and
compared. To the best of the authors knowledge, this is the
first time that the self-consistent method has been used to
tackle the polaron problem.

The first known theoretical treatment of magnetic polarons
in EuTe assumed a variational wave function equal to a
constant within the polaron sphere and zero outside of it [2,34].
A better choice is Bohr’s function, which will be used
here, as done by other authors describing impurity-stabilized
polarons [10,11] and photoinduced ones [35],

ψ(r,aB) = e−r/aB√
πa3

B

. (11)

The effective Bohr radius aB is the variational parameter. With
this choice the radius of the ferromagnetic core, defined in
Eq. (9), can be expressed analytically:

rc =
{

aB
2 ln A

(1−b)πa3
B

if A > (1 − b)πa3
B

0 otherwise.
(12)

TABLE I. EuTe parameters used in the theoretical modeling of
the polaron.

Parameter J1 (K) J2 (K) a (Å) BSF (T) m∗ ε JXf (meV)

Value 0.043 −0.15 6.6 0.08 0.3m0 8.3 83
Reference [1] [1] [36] [32] [37] [18,38] This work

The entry parameters used in all calculations are given in
Table I. For the parameters given in Table I, no bound state is
produced if the Coulomb term of the Hamiltonian is set to zero,
in agreement with Ref. [11], which concluded theoretically that
free conduction band electrons cannot form magnetic polarons
in bulk EuTe.

Figures 2 and 3 show the results of the calculations obtained
both by the self-consistent and variational methods. The varia-
tional results were obtained by substituting Eq. (11) in Eq. (7)
and minimizing the energy obtained, EPol, to yield the best
variational parameter aB. However, the analytical expression
obtained for EPol by using the variational method is too large
to be given here, and therefore only the final values will be
given. For B = 0, aB = 1.27a is found. Figure 2(a) shows the
polaron part of the confining potential, VPol(r), and the radial
probability distribution associated with the envelope wave
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FIG. 2. (Color online) Polaron ground state obtained by the self-
consistent method (lighter curves) and the variational method (darker
curves) at B = 0. (a) VPol(r) (solid line), probability density (dashed
line), and energy of the ground state (dotted line). (b) Radial
dependence of the canting angle.
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FIG. 3. (Color online) Magnetic-field dependence of the polaron
binding energy (solid lines) and of the polaron radius (dashed lines)
obtained by the self-consistent (lighter curves) and the variational
methods (darker curves).

function of the confined electron for B = 0. The self-consistent
VPol(r) is less confining than the variational one given by
Eq. (9), and the self-consistent orbital is more extended. The
energy of the photoexcited electron bound state is found to be
−0.0942 eV for the variational method, and −0.0860 eV for
the self-consistent one. The difference between these values
is explained by the fact that the variational function is only
approximately consistent with Eq. (10), in which the confining
potential itself [Eq. (9)] depends on the wave function.

Figure 2(b) shows the sine of the canting angle as a function
of distance to the polaron center. The variational calculation
produces a ferromagnetic core of radius rc = 0.95a, whereas
the self-consistent result is rc = 0.47a. Given that the nearest-
neighbor distance in the face-centered cubic EuTe lattice is
0.71a, then a small ferromagnetic core is predicted by the
variational model, but no ferromagnetic core is expected in the
self-consistent approximation, which characterizes the polaron
as type I [11].

In the idealized picture above the photoexcited electron is
allowed to polarize all lattice spins, no matter how distant they
are from the polaron center. In reality, the polarization action
of the photoexcited electron is limited to the region where
the effective magnetic field generated by the photoexcited
electron wins the competition with other sources of effective
magnetic fields; for instance, the magnetic anisotropy [39],
which is described by a spin-flop field of BSF ∼ 0.1 T [32].
Consequently the polaron radius will be finite. The radius of
the polaron can be estimated by taking the spin-flop field as a
measure of the minimum effective field that the photoexcited
electron must generate in order to have any effect on the lattice
polarization. Then the polarization action of the photoexcited
electron on the lattice spins, which is measured by how much
the photoelectron changes the (sine of the) canting angle,
which from Eq. (5) is given by A|ψ(r)|2, must be greater
than the change in sin φ that would be caused by a magnetic
field of magnitude BSF, which is simply [15] bSF = BSF/BSAT.
Thus the polaron volume is defined by the values of r that
satisfy the inequality

A|ψ(r)|2 � bSF. (13)

The equality occurs at r = RPol, which by using Eq. (11)
produces an analytical expression for the polaron radius,

RPol = aB

2
ln

A

bSFπa3
B

, (14)

if the variational approximation is used, which gives RPol =
3.6a for B = 0. In contrast, in the self-consistent approxi-
mation, RPol = 4.0a is found numerically from the equality
condition in Eq. (13).

The average canting angle of the lattice spins within the
polaron will be given by

〈sin φ〉 = �−1
Pol

∫ RPol

0
4πr2dr sin φ(r), (15)

where �Pol = 4
3πR3

Pol is the polaron volume, which gives
〈φ〉 = 7◦ for the variational model and 〈φ〉 = 5◦ for the
self-consistent one. Both the theoretically estimated RPol and
the average canting angle 〈φ〉 are in approximate agreement
with the experimental estimates given in Ref. [15], where the
polaron radius was found to be 3.2a, and the complementary
angle to φ was found to be ∼80◦.

From Eq. (15) the total magnetic moment of a polaron can
be estimated to be

MPol = �PolMSAT 〈sin φ〉 , (16)

where MSAT = 4
a3 gSμBS is the saturation magnetization of the

crystal, which givesMPol = 650μB andMPol = 610μB in the
variational and self-consistent calculations, respectively.

When the applied magnetic-field intensity reaches BSAT,
the lattice spins attain complete ferromagnetic alignment, and
the polaron potential becomes a constant, VPol(r) = −JXf S,
as Eq. (9) shows. In this limit, the variational Bohr function
becomes an exact solution of the polaron Hamiltonian. Indeed,
the variational and self-consistent calculations converge to a
single result as b → 1, as Fig. 3 shows. However, the self-
consistent result, which is an exact solution of the polaron
Schrödinger equation, produces a polaron radius that is almost
independent of the magnetic field and varies by at most ∼5%,
whereas the variational result for RPol varies linearly with B,
and can be increased by as much as 20% by the application of
a magnetic field.

The binding energy of the polaron, EBind, is equal to the
photoexcited electron’s self-energy, i.e., the energy it gains by
polarizing the surrounding lattice spins. Put in another way,
EBind is the difference between the total binding energy of the
photoexcited electron and its binding energy when the lattice
spins are unpolarized. The former is the difference between
the energy of the polaron state, EPol, given by Eq. (10),
and the continuum threshold, which according to Eq. (9)
is equal to −bJXf S; the latter is just the effective Rydberg,
R∗ = m∗k2e4/(2ε2

�
2). Thus, as illustrated in Fig. 4,

EBind = −bJXf S − EPol − R∗. (17)

The calculated EBind, using Eq. (17), is shown in Fig. 3 as a
function of the applied magnetic field.

As already mentioned, the Xf interaction can be described
by an effective magnetic field. From Eq. (2) this effective
magnetic field, at a distance r from the polaron center, is

165202-4



LUMINESCENCE PROPERTIES OF MAGNETIC POLARONS . . . PHYSICAL REVIEW B 90, 165202 (2014)

FIG. 4. Confining potential, fundamental energy level, and pa-
rameters that define the polaron binding energy.

easily deduced to be

BXf (r) = JXf

gSμB

a3

4
|ψ(r)|2, (18)

whose average value within the polaron volume is

〈BXf 〉 = 1

�Pol

JXf

gSμB

a3

4
. (19)

The effective Xf field adds to the magnetic field applied
externally, therefore the required external field required to
impose ferromagnetic alignment within a polaron is lower by
〈BXf 〉 than in the rest of the crystal. By using the parameters
given in Table I and RPol ∼ 4a, 〈BXf 〉 ∼ 1 T is obtained, in
approximate agreement with the experimental value [15].

Based on the above theory, valid for T = 0 K, predictions
can be made for polaron effects in the high-temperature limit,
T 
 TN, when the EuTe system approaches paramagnetic
behavior. In this limit, Eff → 0 and EXf dominates the self-
energy of the photoexcited electron for B = 0 (i.e., when
EZ = 0). In the continuum approximation, Eq. (2) can be
rewritten as

EXf = −JXf S 〈sin φ〉 ; (20)

on the other hand, the average magnetization inside the polaron
is given by 〈M〉 = MSAT 〈sin φ〉, hence

〈sin φ〉 = 〈m〉 , (21)

where 〈m〉 = 〈M〉/MSAT is the reduced magnetization (the
magnetization measured in units of the maximum-possible
value, MSAT). But in the paramagnetic limit, 〈m〉 approaches
the Brillouin function, i.e.,

lim
T 
TN

〈m〉 = BS(T ,B), (22)

where S = 7/2 for EuTe. Furthermore, within a polaron we
may approximate B by 〈BXf 〉, the average effective magnetic
field acting on the lattice spins contained in the polaron
volume. Substituting Eqs. (21) and (22) into Eq. (20), we get

lim
T 
TN

EXf = −JXf SBS(T , 〈BXf 〉). (23)

The binding energy of the polaron is simply the absolute value
of the self-energy, i.e.,

lim
T 
TN

EBind = JXf SBS(T , 〈BXf 〉). (24)
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FIG. 5. Calculated magnetic polaron binding energy (left scale)
and magnetic moment (right scale) as a function of temperature, using
Eqs. (24) and (25), respectively.

Finally, the magnetic moment of a polaron is given by
MPol = �PolMSAT 〈m〉, and can also be estimated in the
high-temperature limit by substituting Eqs. (21) and (22) into
Eq. (16), which gives

lim
T 
TN

MPol = �PolMSATBS(T , 〈BXf 〉). (25)

The calculated binding energy, using Eq. (24), is shown
in Fig. 5. It can be seen that the binding energy plummets
towards room temperature. This is explained by the increasing
thermal agitation of the lattice spins when the sample is heated,
which suppresses the ability of the photoexcited electron
to polarize the lattice spins around itself, thereby inhibiting
polaron formation. At T = 100 K, the binding energy is
6 meV (only a small fraction of the T = 0 K value), which
is approximately equal to kBT , hence polaron formation is
unlikely already at T ∼ 100 K. Parallel to the fast decrease of
the binding energy when the temperature is raised, Eq. (25)
shows that the magnetic moment of a polaron also decreases in
the same proportion. For instance, at T = 100 K, the magnetic
moment of a polaron is reduced to only MPol = 150μB.

III. EXPERIMENT

The near-gap photoluminescence (PL) and photolumines-
cence excitation (PLE) in EuTe were measured by using
very low excitation powers (below ∼100 μW/cm2), which
is mandatory for resolving the ZPL [15]. The samples were
grown by molecular beam epitaxy on BaF2 substrates [36].
The thickness of the epitaxial layers was in the range 1–4.2
μm. In the PL investigation, the excitation source was a
Nd:YAG 532 nm laser, and for PLE a Xenon lamp coupled
to a single-grating 0.25 m monochromator was used. Light
was conveyed to the sample and collected from the sample by
using optical fibers and in situ optics assembled in a homemade
sample holder, similar to the one described in Ref. [40]. The
sample holder was used to position the sample inside a cryostat
in complete isolation from ambient light sources. When the PL
intensity is very low (as is the case here, because extremely
low excitation levels were employed), our light collection
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method, instead of using a conventional cryostat with windows
and freestanding optical elements, is advantageous for two
reasons (for a detailed description see Ref. [41]): (1) the in
situ optics allows us to collect light over a greater solid angle;
(2) ambient light sources are completely excluded, whereas
they hinder measurements in an open-lens-optics setup. In
the PLE experiment, the excitation light was left-hand or
right-hand circularly polarized by using a circular polarizer
contained in the in situ optics. All measurements were taken at
a temperature of T = 5 K, under the effect of a magnetic
field of up to 28 T and applied in the Faraday geometry.
Measurements taken in fields above 10 T where done at the
High Magnetic Field Laboratory of Radboud University in
Nijmegen (HMFL).

IV. RESULTS AND DISCUSSION

Measured PL spectra are shown as a function of the applied
magnetic field in Fig. 6(a), whereby a weak manifold of
equally spaced lines could be resolved. As an example, the
black solid line in Fig. 6(b) shows the PL for B = 7 T, in
which seven lines, equally spaced by the EuTe optical phonon
energy [42] of 17.5 meV, are well resolved. The manifold
intensity fits well with a Poisson distribution (for details see
Ref. [15]), characteristic of a radiative transition between two
electronic states but coupled to a single phonon mode [43,44].
Therefore, the whole of the PL band is ascribed to a single
photoexcited electronic state, the so-called X state, as detailed
in Ref. [15]. The light dashed curves in Fig. 6(b) show the
isolated individual phonon replica from which the position,
width, and intensity of the ZPL can be extracted.

In contrast to the commonly observed PL in EuTe reported
by other authors, which consists of the unresolved superposi-
tion of several lines, the ZPL is associated with a single and
pure electronic transition. Therefore, the ZPL displacement,
when the crystal is submitted to a perturbation of some kind,
measures directly the displacement of the electronic energy
levels. This is not the case for a PL line that englobes several
electronic transitions or multiphonon emissions, because in
the latter case the energy shift of the PL maximum may be
driven by an uneven change in the oscillator strengths of
the transitions comprising the PL band and not by any real
shift of energy levels. Moreover, since the ZPL is associated
with a polaron state, an energy shift of the ZPL is equal to
a change in the energy of the polaron. Figure 7 shows the
shift in the position of the maximum of the ZPL as a function
of magnetic field. Below the saturation field of BSAT = 7.3
T (the intensity of the applied magnetic field required to
impose ferromagnetic spin alignment within a polaron), the
linear redshift is described by a slope of 38 meV/T. For
comparison, the shift in the polaron energy, EPol, predicted
by the self-consistent calculation using parameters given in
Table I, is also shown in Fig. 7(a). The theory predicts the
correct behavior and, up to the saturation field, the agreement
between theory and experiment is slightly better if the value
of the parameter JXf is taken to be JXf = 83 meV, as given
in Table I, instead of JXf = 77 meV, estimated in an earlier
work [15].

At B = BSAT = 7.3 T (i.e., when b = 1.0), full ferromag-
netic alignment within the polaron is achieved. However,

1.5 1.6 1.7 1.8 1.9 2.0

28 T

26 T

25 T

22.5 T

20 T

17.5 T

15 T

12.5 T

10 T

9.5 T

8 T

6 T

4 T

2 T

P
L 

in
te

ns
ity

 (
ar

b.
 u

ni
ts

)

energy (eV)

0 T

(a)

T=5K

1.550

200

400

600

800
MX0

N
=6 N
=5

N
=4

N
=3

N
=2

N
=1

 P
L 

in
te

ns
ity

 (
ar

b.
 u

ni
ts

)

photon energy (eV)

B =7 T
T =5 K

N
=0

 (Z
PL

)

(b)

1.60 1.65

FIG. 6. (Color online) (a) Normalized PL spectra for an epitaxial
sample of thickness 4.2 μm as a function of field. For clarity, the
curves were displaced vertically. The magnetic field corresponding to
each curve is indicated. Above B = 10 T the spectra were taken using
a slightly larger excitation power, which leads to a less-well-resolved
phonon structure [15]. (b) PL spectrum at B = 7 T. Black line is
the experimental result, the light curve depicts a fit with a Poisson
distribution of lines [15], from which the ZPL is identified. Dashed
curves show the individual phonon lines that compose the fit.

at this field the lattice spins outside the polaron sphere are
not yet saturated. Increasing the field up to B = 8.3 T, then
ferromagnetic alignment is imposed everywhere, the magnetic
polaron ceases to exist, and the position of the ZPL is expected
to remain constant. However, Fig. 7 shows that the ZPL
continues to redshift (by about 15 to 20 meV) even when
the applied magnetic field is greater than the saturation field,
up to 15 T, where the redshift comes to a halt. The small
redshift between 8.3 and 15 T is probably associated with a

165202-6



LUMINESCENCE PROPERTIES OF MAGNETIC POLARONS . . . PHYSICAL REVIEW B 90, 165202 (2014)

0 5 10 15 20 25

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

T=5K

b=
1.

0

 
en

er
gy

 s
hi

ft
 (

eV
)

magnetic field (T)

JXf =83 meV
JXf =77.1 meV

FIG. 7. (Color online) Redshift of the ZPL as a function of
applied magnetic field (lower scale). The upper scale shows the
field in units of the saturation field BSAT required to align the lattice
spins. Circles (triangles) represent data taken on an EuTe epitaxial
layer of 1.0 μm (4.2 μm). Theory is shown for JXf = 77 meV and
JXf = 83 meV.

magnetic-field suppression of roughness in the confining
potential of the photoexcited electron, associated with struc-
tural or chemical inhomogeneities.

The position of the ZPL as a function of temperature at
B = 0 was already reported (Fig. 4 in Ref. [15]). The ZPL
could be followed up to a temperature of about 30 K. Above
30 K, the PL becomes too weak, and the ZPL can no longer
be resolved. Nevertheless, between the Néel temperature and
30 K, a blueshift of about 20 meV is observed, which
is typical of the optical-band-edge absorption spectrum of
EuTe in a magnetic field [1]. When an external magnetic
field is present, the blueshift is associated with increasing
lattice spin fluctuations, which reduce the magnetization
induced by the magnetic field, which in turn reduces the Xf
energy gain of the photoexcited electron. However, the ZPL
blueshift observed here occurs when no external magnetic field
exists, which provides independent proof that the photoexcited
electron generates an effective magnetic field. The blueshift
also indicates that increasing the temperature progressively
destroys the polaron, as expected from the theoretical model
(see end of Sec. II B).

Finally, the photoluminescence excitation spectrum of
the ZPL is shown in Fig. 8 as a function of the applied
magnetic field. The PLE threshold is characterized by the
same quadratic redshift seen in the optical absorption of
EuTe, which is due to the narrowing of the band gap [45].
However, at any applied field, the PLE spectrum was always
independent of the polarization of the excitation light, in
striking contrast to the optical absorption spectrum, which
shows a huge circular dichroism [45]. This result can be
interpreted in the following way: Although at the band-edge
threshold the optical densities are different for left- and
right-hand circularly polarized photons, both photons end up
being absorbed anyway, because the samples used here are
very thick, thus both photons generate photoexcited electrons,
albeit in different excited electronic states. However, prior to

FIG. 8. (Color online) PL (left scale) and PLE (right scale) as
a function of the applied magnetic field. PL spectra shown were
measured by using an excitation tuned to the maximum of the PLE
spectrum.

recombination, the photoexcited electron relaxes energy and
spin [27], loosing memory of the excited electronic state it
occupied initially. Thus the PL produced is uncorrelated with
the polarization of the excitation light.

Additionally, when the energy of the excitation photons is
driven above the EuTe band gap, the PLE intensity decreases,
which is again in sharp contrast to the optical absorption,
which steeply increases [24,45]. The decreasing PLE signal
points to a decreasing connection between energy levels higher
in the conduction band and the relaxed state that originates
the ZPL. This suggests that electrons excited to states of
higher energy have an increasing chance of encountering a
nonradiative recombination path, which is quite plausible.
Another aspect worthy of notice is the decreasing PLE signal
with increasing magnetic field at a fixed energy just above
the band gap. This is the case for the PL with photons of
energy 532 nm (2.33 eV), which is near the maximum of the
PLE spectrum at B = 0, as the dotted line in Fig. 8 shows.
Upon increasing the applied magnetic field, the EuTe band
gap hugely redshifts, hence the 2.33 eV excitation photons are
strongly moved out of resonance, and for a fixed excitation
power the PL signal decreases. Therefore the observation of
a decreasing PL signal with increasing magnetic field can be
partly explained by the increasing disconnection between the

165202-7



A. B. HENRIQUES et al. PHYSICAL REVIEW B 90, 165202 (2014)

hot photogenerated electrons and the relaxed photoexcited
state, and not necessarily by a change in the symmetry of
the relaxed photoexcited state, as has been suggested in the
literature [18].

V. CONCLUSIONS

In summary, the magnetic polaron in EuTe has been
revisited in high-quality crystals grown by MBE and thor-
oughly investigated both theoretically and experimentally. A
very concise single-particle effective Hamiltonian operator,
describing the polaron in a magnetic field, was formulated,
and its Schrödinger equation was solved exactly by using the
self-consistent method for the first time. Although in general
the self-consistent method produces very similar results to
those obtained by the variational method, some results are
distinctly different, e.g., the size of the ferromagnetic core, the
size of the polaron itself, and the magnetic-field dependence
of the latter. The theory correctly predicts the ZPL shift in a
magnetic field, and with increasing temperature of the sample,
demonstrating its reliability. The theory is very compact
and depends on few entry parameters (exchange constants,
effective mass, and dielectric constant), and could be used
to describe magnetic polarons not only in other europium
chalcogenides, but in many other materials as well.

Confrontation of the theory with the experimental data
gathered on EuTe provides an estimate for the Xf exchange
constant, JXf = 83 meV. At T → 0 K, the polaron radius is 4a,
the binding energy of the polaron is 27 meV, and its magnetic
moment is 610μB. However, the polaron binding energy and
its magnetic moment decrease drastically when temperature
is increased and, by T ∼ 100 K, the polaron is effectively
destroyed. This is explained by the increasing agitation of the
lattice spins when the temperature is raised, which makes them
less susceptible to the effective magnetic field the photoexcited
electron produces.

The PLE intensity is independent on the polarization of
the excitation light, which demonstrates that the spin of the
photoexcited electron that generates the magnetic polaron is
completely relaxed when the polaron is formed. Finally, it was
demonstrated that polaron generation is most efficient when
the excitation-light photons are in resonance with the EuTe
energy gap and progressively decreases when the excitation-
photon energy is increased beyond the EuTe gap.
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