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Abstract

Nonlinear saturation of unstable solutions to the full, one-dimensional, weakly relativistic Zakharov
equations 1s considered in this paper. Focusing attention on instabilities developing from low-frequency
perturbations we introduce a quantity proportional to the initial energy of the high-frequency field. p,,,
and the wave vector of the basic perturbing low-frequency mode, k = 27/ L with L as the length scale,
to identify a number of regions on a p,, X k parametric plane. For p,, K 1 ion-acoustic dynamacs s
found to be unimportant no matter the value of k; 1n this situation the system s numerically shown
to be integrable even for very small values of k where the solutions are not simply periodic. For
larger values of po, 1om-acoustic fluctuations become active modes of the system driving a transition
to chaos if k is bellow a critical value. The nfluence of relatrvistic terms in the Zakharov equation
is investigated; it is shown that such terms generally lower the amplitude thresholds for transition to
chaos.

Langmuir turbulence has been one of the most studied problems in modern nonlinear
plasma physics. Over the last years a great deal of effort has been directed to the analysis of
the turbulence and related subjects as cavitation, collapse, soliton dynamics and others {1, 2].
The turbulence is governed by the Zakharov equations which nonlinearly couples a high-
frequency electrostatic field with frequencies close to the plasma frequency (the Langmuir
field), to low-frequency fluctuations with time scales comparable to the ion-acoustic period
(the ion-acoustic field) [3]. When the time scale of the ion-acoustic field is sufficiently slow,
a condition characterizing the so called sub-sonic regime, the governing set of equations
reduces to a single Nonlinear Schrédinger Equation (NLS). In this case the low-frequency
modes are enslaved to the high-frequency ones and the system is shown to be completely
integrable. On the other hand. when the jon-acoustic time scale is not slow enough, low-
frequency modes become active. destroying integrability and driving a transition to chaos.
An useful integrable low-dimensional model can be obtained as follows. One feeds a certain
amount of energy into a stationary high-frequency Fourier mode and perturb this equilibrium
solution with a low-frequency disturbance consisting of a single wave vector mode k which
sets the length scale of the problem. Starting from this initial situation, and imposing some
restrictions on the initial amplitude of the high-frequency field and on the wave vector of
the low-frequency mode, the Fourier series of the nonlinear developing solutions are then
truncated to three modes. Two are the restrictions justifying the truncation procedure: (i)
the possibility of enslaving the low-frequency dynamics to the high-frequency one, whereupon
by disregarding time derivatives in the equation for density fluctuations one obtains the NLS
mentioned above; and (ii) choosing the perturbing wave vector such that its harmonics are
outside the unstable band. In the present paper it is found that both restrictions can be
easily represented on a parametric bidimensional space where one of the axis is proportional
to the initial energy and the other is the wave vector k. It is shown that the low-dimensional
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domain is a finite region of this parametric space. As one abandons the low-dimensional
region, solutions are likely to loose their regularity. It shall be seen that this is indeed the
fact. With numerical simulations and the analysis of Lyapunov diverging trajectories we shall
see that the appearing irregular solutions can be of two types: (i) For very small values of
the initial energy, the irregular solutions are quasiperjodic with no associated chaos; (ii) for
larger values, solutions are chaotic with positive Lyapunov exponents. Relativistic terms are
shown to lower the amplitude thresholds to chaos. As they can thus alter the character of
an outcoming solution from regular to chaotic, they are to be considered as relevant for the
problem. Note that even if the original perturbing terms are small, the final effect cannot
be simply allocated in simple small corrections of phases or amplitudes of the solutions. Let
us first write down the conveniently normalized form of the weakly relativistic Zakharov
equation which shall be used in the following analysis. These equations are [4]:

i0:E+ 0'E = n E ~ o|E)*E (1)

and

O — 9 = 0% B, (2)
where E is the electric field normalized to 8‘/7r%%fnon with m,; as the electron/ion

mass and T, as the electron temperature. n is the low-frequency density fluctuations nor-
malized to the equilibrium density n, and a is the weakly relativistic parameter given by
a = 3T./m.c® € 1 with ¢ the velocity of light. Time and coordinate are adimensionalized
as (me/m;)wyt — t and VMe/mi(wp/ve)T — T respectively, where wp is the electron plasma
frequency. It is now assumed that the solution is spatially periodic with period I = 2r [k
where 27 /k is the basic length scale. At this point the low-dimensional model can be ob-
tained if one Fourier expands all the dynamical variables and truncates the series to three
high-frequency terms, E = E.(t) + EL(t)e*® + E_(t)e~ike, Besides, one assumes that the
time scale satisfies 97 << 92, to get n = n,e'*% + nye2kT 4 ¢ e with
ng=-EyEX-E*F,, ng=-E,E”.

]

In view of the fact that for a real variable np = nZ,, these two relations are sufficient to
determine the low-frequency field. On substituting n; and n, into Eq.(1), writing

EJ(t) = \/,O—j‘(t)6i¢'7(t)efta(lEa|2+'E+|2+lE_l2)dt,

whith j = 0, +, —, defining y = ¢+ + ¢~ — 20, and separating the low-dimensional group of
equations into real and imaginary parts. one arrives at the following equation for the variable
b SOlely: dip = ~2(1+0)pl oo —po)v/T = cos? i, whete cos? © = (( s )2 p, — (2221
If one introduces p,, = po(t = 0), the validity conditions for the various formulas obtained
so far generate the set of relations:

1 00
k< ks(poo) =y 2(1+ )Poo, k> kh(Poo) = V HTa)p~ k> ki(poo) = 2V1 + apg,.

We show the region defined by curves k,, k; and k; above in Figure 1, both for the
nonrelativistic @ = 0 case and for a weakly relativistic case @ = 0.3. From k; one sees
that the low-dimensional region is in fact situated at Poo € 1. When such a condition is
satisfied, the system is expected to be stable above ks, simply periodic between ks and kj,
and quasiperiodic bellow kj. Curve k; defines the line of transition between subsonic and
supersonic ion-acoustic fluctuations. Ion acoustic modes become active if one is close to
k; and begins to play some noticeable role in the dynamics for p,, ~ 1 where k; becomes
comparable to the &, or k;. As mentioned before, relativistic effects are expected to lower
the thresholds for transition to chaos. Let us proceed to check all the assertives above with
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Figure 1: Parametric phase-space p,, X k for p,o < 1 (fig. (a)) and po, ~ 1 (fig (b)). The
filled circles show the simulated points.
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Figure 2: Time Series of p,(t) (a) and D(t) (b) for po,o = 1.0e—6,k = 1.8¢—3,1.0e—3,5.0e—4.

numerical simulations based on the full set (1) and (2). Our simulation scheme consists in
writing all the dynamical variables and the differential equations as Fourier series in the
spatial variable, A number of modes ranging from 32 to 128 for each dynamical variable is
used, nonlinear products in the differential equations are evaluated with a FFT subroutine
and the set of temporal equations is advanced in time with a predictor-corrector algorithm.
Both the FFT and the predictor-corrector are subroutines of a CRAY YMP-2E computer.
Numerical precision is tested by monitoring the time evolution of the conserved quantity
H = [L|6,E* - o|E|* + n|E? + 1(n? + v¥)|dz, with din = —0,v; relative errors were
found to be about one part in 108. As a first investigation. let us examine the behavior
of the system for small values of po,, poo = 1.0e — 6. We do so in Figure (2a) for k& =
18¢ -3, k = 1.0e — 3 and k = 5.0¢ — 4. In the first case whose representative point lies
in the stable region of Figure 1, above k,, one has indeed a trivially stable solution. The
second case corresponds to a point between k, and kj; - in agreement with the estimates,
one has a periodic solution. In the third case one is bellow k; and the solution appears
to be nonperiodic or irregular. We now introduce the Lyapunov coefficient as the average
slope of the function D(t) = log[d(t)/d(t = 0)] in a D(t) x t plot. D(t) is the Euclidean
distance between two initially close trajectories, calculated according ref. [1]. In Figure (2b)
we plot D(t) corresponding to the three cases of Figure (2a). The plots show that in all cases
the diverging trajectories goes at most as log(t), which signals the existence of integrable
dynamics [5]. The irregular integrable trajectory occurring for k¥ = 5.0e — 4 is therefore a
quasiperiodic one, a feature to be expected in view of the properties of the NLS governing
the system for such a low values of p,,. We repeat the simulations in Figure 3 now for
Poo = 0.2. Again, for k > k, one has a stable solution. However, the solution corresponding
to kp < k = 0.5 < k, is chaotic. This can be clearly seen from Figure (3b) where a positive
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Figure 3: Same as in Figure 2 for p,, = 0.2. k = 0.8, 0.5.
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Figure 4: De-stabilizing influence of relativistic effects: a = 0 (dashed line); & = 0.3 (full
line).

average slope of D(t) x t can be identified. Further reduction of k bellow kh causes no
additional alteration on the character of the chaotic solutions. A final simulation represented
in Figure 4 is performed for k£ = 0.6 and p,, = 0.2 where the nonrelativistic o = 0 dynamics
is regular. In agreement with the estimates, the Figure shows that if a is raised to a = 0.3,
chaos is brought in. More detailed investigation on the problem shall be published elsewhere.
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