

BESM-HAM implementation

Jayant Pendharkar Groupo Química e Aerossóis

Rationale

Hamburg Aerosol Model (HAM)

- developed at MPI (Stier et al., 2005)
- > predicts the spatio-temporal evolution; and size distribution & composition
- processes: aerosol transport radiative feedbacks (ϕ, γ, ω) dry and wet deposition sedimentation nucleation, coagulation
- 0.005 < r < 0.05Accumulation 0.05 < r < 0.5Coarse condensation & thermodynamics > rich emission inventory

Black carbon

Sulfate

Nucleation

Aitken

Organic carbon

Dust

Sea salt

Water

size range (µm)

 $r \le 0.005$

prognostic parameters: tracer mass mixing ratio & number mixing ratio

internally mixed /

soluble

insoluble

features

> outputs:

- driven by meteorological parameters
- > modular submodel interface
- extensively uses data types and recursive pointer structures
- inputs required:

 optical look-up tables
 volcanic and soil properties

 AEROCOM emission files
- mass & number mixing ratios
 radiative properties as a f(modes)
 diagnosis of particle sources & sinks
 deposition fluxes & velocities

densities & median radius of modes

ECHAM6

General circulation
Physics of atmosphere
Radiation, convection, diffusion, clouds

hardwired

AGCM-HAM pre-run setup:

- introduced a logical variable 'laermodel' in MODELIN namelist of AGCM
- > separate namelist for HAM and soft links to HAM input file created
- > makefile extended with compiler options and libraries for HAM codes
- a new executable 'ParModel_MPI-ham' created which can be run & logs be checked

Initialization phase:

- > read HAM namelist to set submodel control parameters
- > sets the time and date manager routines for format compatibility
- initialize aerosol module and its species define HAM tracers
- > create and initialize streams for various processes deposition, sedimentation, emissions
- > reads submodel boundary conditions dust emissions and soil properties

atmos_model_fin

workplar

Simplified flowchart for AGCM-HAM (current stage)

workplan – 2015 - 16

Computational phase:

- ➤ identification of the necessary input variables from AGCM required for HAM computations
- develop scheme to include or reference the AGCM variables into HAM streams and dereference them back after HAM computations
- ➤ introduce HAM computational calls into the interface
- develop or adopt routines to handle outputs of HAM

Evaluation phase:

plan and run experiments to evaluate the new aerosol component inside BESM

Thank you!

initialization phase

- read namelist
- initialize modules
- domain decomposition
 - initialize HAM
- read input files
 - read HAM inputs

computational phase

- physics
 - HAM physics
- radiation
 - HAM radiation
- microphysics
 - HAM clouds
 - HAM vert. diff.
 - HAM convection
- outputs & restarts
 - HAM outputs

evaluation phase

plan & run experiments to evaluate the aerosol component in AGCM

