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Abstract

From the field equations in the linear regime of the characteristic formulation of general relativity,

Bishop, for a Schwarzschild’s background, and Mädler, for a Minkowski’s background, were able

to show that it is possible to derive a fourth order ordinary differential equation, called master

equation, for the J metric variable of the Bondi-Sachs metric. Once β, another Bondi-Sachs

potential, is obtained from the field equations, and J is obtained from the master equation, the other

metric variables are solved integrating directly the rest of the field equations. In the past, the master

equation was solved for the first multipolar terms, for both the Minkowski’s and Schwarzschild’s

backgrounds. Also, Mädler recently reported a generalisation of the exact solutions to the linearised

field equations when a Minkowski’s background is considered, expressing the master equation family

of solutions for the vacuum in terms of Bessel’s functions of the first and the second kind. Here,

we report new solutions to the master equation for any multipolar moment l, with and without

matter sources in terms only of the first kind Bessel’s functions for the Minkowski, and in terms of

the Confluent Heun’s functions (Generalised Hypergeometric) for radiative (nonradiative) case in

the Schwarzschild’s background. We particularize our families of solutions for the known cases for

l = 2 reported previously in the literature and find complete agreement, showing the robustness of

our results.
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I. INTRODUCTION

The characteristic formulation of general relativity offers an attractive point of view to

deal with the problem of gravitational wave emission from a source, because this formulation

is based on radiation coordinates. Several complex numerical codes have been developed to

treat diverse problems in the nonlinear regime [1–8]. However, given the complexity of the

field equations, there are not analytical solutions in the characteristic formulation in this

regime.

In particular in the weak field limit, this formulation has been used to construct wave ex-

traction algorithms that are applied to obtain the radiation patterns produced in complex

numerical simulations of binary systems. Such simulations are usually performed using 3+1

numerical codes, and then matching algorithms are used in order to make the gravitational

wave extraction from some characteristic formulation schemes (see, e.g., [7, 9]).

Furthermore, the linear regime has been applied in some interesting situations, despite lack-

ing physical meaning in some cases, such as the equilibrium of a thin shell around a static

black hole or in a flat space-time, the motion of a point particle orbiting a Schwarzschild’s

black hole and the problem of a point particle binary system emitting gravitational radiation

[10, 11].

In all of these cases the characteristic initial value problem is exchanged by a boundary prob-

lem by means of expressing the metric variables as products of their spectral components,

using a spin-weighted decomposition, and time oscillatory functions. All these problems

deal with matter distributions, in which the field equations could involve terms containing

Dirac’s delta or Heaviside’s functions. The boundary problem is solved imposing regularity

in the metric variables at the vertices of the null cones as well as at the null infinity; also,

discontinuities in the metric and in their derivatives just across the timelike world tubes

which bound the sources are required. This last issue can be done by just following the

standard procedures found in the literature, accordingly to the boundary problem to be

solved (see, e.g., Bonnor [12], Georgiou [13], Israel [14], Choquet-Bruhat [15], Taub [16, 17],

Bishop [10].)

We show that it is possible to find analytical solutions to the system of equations for both

backgrounds considered (Minkowski and Schwarzschild) using standard methods. In order

to do that, it is necessary to transform the problem from partial to ordinary differential
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equations, through the expansion of the metric variables in spin-weighted spherical harmon-

ics, or in other words, through a multipolar expansion, in which the time dependence is

encoded in a periodic function. The substitution of such multipolar expansions into the field

equations yield a system of coupled ordinary differential equations. The process to decouple

them leads to an equation known as the master equation, which has been solved in the

Minkowski’s case for the vacuum [18], and in presence of a static black-hole for particular

values of l [10].

However, it is worth mentioning that it has not been reported so far in the literature any

analytical family of solutions to the master equation with sources in the Minkowski’s back-

ground. Also, concerning the Schwarzschild’s background, there are not any solution for the

vacuum nor with any source terms, for any multipolar order.

We will show in this paper, for the first time in the literature, families of solutions to the

master equation, with and without source terms, for arbitrary values of l , for the Minkowski

and Schwarzschild’s background.

Here we consider that in both cases studied the sources produce only slight deviations to

the background. Consequently, the linear approximation is not taken only for distant points

from the sources, but instead it is considered valid for the whole space-time. Within this

approximation, we will present the families of solutions to the master equation with and

without source terms. In order to do that, some aspects of the characteristic formalism of

general relativity and the field equations are briefly present in Sec. II. The derivation of the

master equation is shown in Sec. III; and the solutions to the master equation are shown

in Sec. IV. In Sec. V it is shown that these general solutions are reduced to the known

solutions for l = 2. Finally, in Sec. VI we present some final considerations and conclusions.

II. THE CHARACTERISTIC AND ETH FORMALISMS

As a starting point, we consider that the space-time is foliated into null cones oriented

to the future, which emanate from a central timelike geodesic parametrized by the retarded

time x1 = u. Consequently, each null cone is labeled by the retarded time. The lumi-

nosity distance x2 = r is another parameter measured along the null outgoing rays on the

cones. This parameter is chosen in such a way that for r and u constants the spacelike 2-
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hypersurfaces possess an area of 4πr2. In addition, the angular coordinates are represented

by xA, where A = 3, 4. In these coordinates the Bondi-Sachs metric [19, 20] reads

ds2 =−
(

e2β
(

1 +
w

r

)

− r2hABU
AUB

)

du2 − 2e2βdudr

− 2r2hABU
BdxAdu+ r2hABdx

AdxB, (1)

where β represents the redshift, w is related to the Newtonian potential, UA measures the

shift of the null cones and hAB represents the metric of the angular manifold.

The metric of the unit sphere qAB is expressed in terms of dyadic products of the complex

vectors qA. These vectors are related to the tangent vectors to the unit sphere which are

oriented along the coordinate lines defined by the charts used to make the finite coverage

of the sphere [21, 22]. Conventionally, an atlas composed of two stereographic charts, con-

structed from the poles, are used to cover the unit sphere, and the properties shown here are

referred to this particular selection. The metric is then expressed as qAB = q(AqB), where the

round brackets are denoting symmetrisation with respect to their indices and the overline

indicates complex conjugation. In addition, these vectors are null i.e., qAqA = 0 and satisfy

qAq
A = 2. They are used to project the angular part of all tensors in the space-time onto the

unit sphere. Thus, the angular part of these tensors can be decomposed in spin-weighted

scalars with different spin-weights, as described in [21–23].

Consequently, a spin-weighted function sΨ with spin-weight s can be constructed from a

tensor Ψa1···an
b1···bm

in the tangent space to the unit sphere, as

sΨ =
n
∏

i=1

Λai

m
∏

j=1

ΛbjΨa1···an
b1···bm

, (2)

where Λai and Λbj can take the values qai or qai and qbj or qbj respectively. The spin-weight

s of the functions sΨ depends on the number of qai , qai , q
ai or qai used to construct them.

Thus, if m, s̃, n, r are the number of vectors qai , qai , qai , qai respectively, used to construct

the spin-weighted scalar sΨ, its spin-weight is given by

s = 2(m+ n)− (r + s̃). (3)

Hence, the metric for the angular manifold, hAB, is decomposed into three spin-weighted

scalars J , J and K, with spin-weights 2, −2, 0 respectively. Thus,

h33 =
2(J + J + 2K)

(1 + |ζ |2)2 , h34 = − 2i(J − J)

(1 + |ζ |2)2 , h44 = −2(J + J − 2K)

(1 + |ζ |2)2 , (4)
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where ζ defines the stereographic coordinates, which are related to the spherical coordinates

through

ζ = tan (θ/2) eiφ, ζ = tan (θ/2) e−iφ; (5)

and the symbol |A| indicates the norm of the complex scalar A. Similarly, the shift vector

UA is decomposed into two spin-weighted scalars U and U with spin-weights 1 and −1

respectively,

U = qAU
A, U = qAU

A. (6)

The projections of the covariant derivative related to the unit sphere metric qAB onto the

dyads qA or qA, lead to the differential operators ð and ð. They result in

ð sΨ = qA sΨ,A + sΩ sΨ, ð sΨ = qA sΨ,A − sΩ sΨ, (7)

where the comma indicates partial derivation and Ω is the contraction Ω = −qAqBqA|B/2,

in which the vertical line was used to represent the covariant derivative with respect to the

metric of the unit sphere qAB. Notice that (7) highlights the action of these operators on

the spin-weighted functions sΨ, to rise or lower their spin-weights. Through the coordinate

transformation between the north and the south charts and from (7) one obtains

ð sΨ = s+1Ψ, ð sΨ = s−1Ψ. (8)

Using (4) and (6), the Bondi-Sachs metric (1) can be reexpressed in terms of those spin-

weighted scalars. In the linear regime, when the second or higher order terms are disregarded,

the metric is reduced to

ds2 = −du2 − 2dudr +
4r2

(1 + |ζ |2)2
(

dq2 + dp2
)

+
(w

r
+ 2β

)

du2

− 4βdudr− 2r2

1 + |ζ |2du
(

(U + U)dq − i(U − U)dp
)

− 4ir2
(J − J)

(1 + |ζ |2)2dqdp+
2r2
(

J + J
)

(1 + |ζ |2)2
(

dq2 − dp2
)

, (9)

which corresponds to a perturbation to the Minkowski metric.

The Einstein’s field equations

Eµν = Rµν − 8π (Tµν − gµνT/2) = 0, (10)
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in the characteristic formulation of general relativity [24–26] can be written as

E22 = 0, E2Aq
A = 0, EABh

AB = 0, (11a)

EABq
AqB = 0, (11b)

E11 = 0, E12 = 0, E1Aq
A = 0. (11c)

corresponding to hypersurface, evolution and constrain equations respectively.

Explicitly, for the perturbation given in (9) one obtains

8πT22 =
4β,r

r
, (12a)

8πT2Aq
A =

ðJ,r

2
− ðβ,r +

2ðβ

r
+

(r4U,r),r
2r2

, (12b)

8π
(

hABTAB − r2T
)

= −2ððβ +
ð2J + ð

2
J

2
+

(

r4
(

ðU + ðU
))

,r

2r2

+ 4β − 2w,r, (12c)

8πTABq
AqB = −2ð2β +

(

r2ðU
)

,r
−
(

r2J,r

)

,r
+ 2r (rJ),ur , (12d)

8π

(

T

2
+ T11

)

=
ððw

2r3
+

ððβ

r2
−
(

ðU + ðU
)

,u

2
+

w,u

r2
+

w,rr

2r

− 2β,u

r
+

2β,r

r
+ β,rr − 2β,ru, (12e)

8π

(

T

2
+ T12

)

=
ððβ

r2
−
(

r2
(

ðU + ðU
))

,r

4r2
+

2β,r

r
+ β,rr

− 2β,ru +
w,rr

2r
, (12f)

8πT1Aq
A =

ðJ,u

2
− ð

2U

4
+

ððU

4
+

1

2

(

ðw

r

)

,r

− ðβ,u +
(r4U,r),r

2r2

− r2U,ur

2
+ U, (12g)

which were computed previously by Bishop in [10] for the Schwarzschild’s background.

Now, given that the eigenfunctions of the [ð, ð] operators are the spin-weighted spheri-

cal harmonics sZlm, defined in [27] as,

sZlm =



























i√
2
((−1)m sYlm + sYl −m) for m < 0

sYlm for m = 0

1√
2
(sYlm + (−1)m sYl −m) for m > 0

, (13)
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where the spin-weighted spherical harmonics sYlm, are also eigenfunctions of [ð, ð] and are

defined in [21–23, 28], as

sYlm =























√

(l − s)!

(l + s)!
ðsYlm if s ≥ 0

(−1)s

√

(l − s)!

(l + s)!
ð̄
−sYlm if s < 0

. (14)

and the fact that spin-weighted spherical harmonics constitutes an orthonormal and com-

plete base of functions, then the metric variables can be expanded in a multipolar series as

sf =
∞
∑

l=0

l
∑

m=l

ℜ
(

flme
i|m|φ̃

)

ð
s Zlm, (15)

where sf = {β, w, J, J, U, U}, Zlm = 0Zlm, φ̃ is a general function of the retarded time, i.e.,

φ̃ := φ̃(u), flm are the spectral components of the function sf , m ∈ Z, m ∈ [−l, l] and l ≥ 0

indicating the multipolar order.

Notice that in (15) the spin-weight of the function sf is contained in ð
sZlm. Therefore,

substituting (15) into the field equations (12) one obtains ordinary differential equations for

their spectral components, in which the spin-weighted factors have been eliminated, namely

βlm,r = 2π

∫

Ω

dΩ Z lm

∫ 2π

0

dφ̃ e−i|m|φ̃rT22, (16a)

− (l + 2)(l − 1)Jlm,r

2
− βlm,r +

2βlm

r
+

(r4Ulm,r),r
2r2

=
8π

√

l(l + 1)

∫

Ω

dΩ Z lm

∫ 2π

0

dφ̃ e−i|m|φ̃T2Aq
A, (16b)

2l(l + 1)βlm + (l − 1)l(l + 1)(l + 2)Jlm +
l(l + 1) (r4 (Ulm)),r

r2

+ 4βlm − 2wlm,r = 8π

∫

Ω

dΩ Z lm

∫ 2π

0

dφ̃ e−i|m|φ̃
(

hABTAB − r2T
)

, (16c)

− 2βlm +
(

r2Ulm

)

,r
−
(

r2Jlm,r

)

,r
+ 2i|m|r ˙̃φ (rJlm),r

=
8π

√

(l − 1)l(l + 1)(l + 2)

∫

Ω

dΩ Zlm

∫ 2π

0

dφ̃ e−i|m|φ̃TABq
AqB, (16d)

7



− l(l + 1)wlm

2r3
− l(l + 1)βlm

r2
+ i|m|l(l + 1) ˙̃φUlm +

i|m| ˙̃φwlm

r2

+
wlm,rr

2r
− 2i|m| ˙̃φβlm

r
+

2βlm,r

r
+ βlm,rr − 2

˙̃
φβlm,r

= 8π

∫

Ω

dΩ Z lm

∫ 2π

0

dφ̃ e−i|m|φ̃

(

T

2
+ T11

)

, (16e)

− l(l + 1)βlm

r2
+

l(l + 1) (r2Ulm),r
2r2

+
wlm,rr

2r

= 8π

∫

Ω

dΩ Z lm

∫ 2π

0

dφ̃ e−i|m|φ̃

(

T

2
+ T12

)

, (16f)

− i|m|(l + 2)(l − 1)Jlm
˙̃φ

2
+

1

2

(wlm

r

)

,r
− i|m| ˙̃φβlm +

(r4Ulm,r),r
2r2

− i|m|r2 ˙̃φ
2

Ulm,r + Ulm =
8π

√

l(l + 1)

∫

Ω

dΩ Z lm

∫ 2π

0

dφ̃ e−i|m|φ̃T1Aq
A, (16g)

This system of coupled ordinary equations is separable through a simple procedure, as we

will show in the next section. Notice that an alternative procedure is presented by Mädler

in [18].

III. THE MASTER EQUATION

Making the change of variable x = r−1, the field equations (16a) - (16d) become

βlm,x = −x2Alm, (17a)

(l + 2)(l − 1)xJlm,x + 2xβlm,x + 4βlm − 2Ulm,x + xUlm,xx = Blm, (17b)

− 2x3Jlm,xx − 4i|m| ˙̃φxJlm,x + 4i|m| ˙̃φJlm + 4Ulm − 2xUlm,x − 4xβlm

= 2xDlm, (17c)

where the source terms Alm := Alm(x), Blm := Blm(x) and Dlm := Dlm(x) are explicitly

defined,

Alm = 2π

∫

Ω

dΩ Zlm

∫ 2π

0

dφ̃ e−i|m|φ̃xT22, (18a)

Blm =
16π

√

l(l + 1)

∫

Ω

dΩ Z lm

∫ 2π

0

dφ̃ e−i|m|φ̃xT2Aq
A, (18b)

Dlm =
8π

√

(l − 1)l(l + 1)(l + 2)

∫

Ω

dΩ Z lm

∫ 2π

0

dφ̃ e−i|m|φ̃TABq
AqB. (18c)
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In addition, solving (17b) for 4xβlm and substituting it into (17c), one obtains

− 2x3Jlm,xx − 4i|m| ˙̃φxJlm,x + x2(l + 2)(l − 1)Jlm,x + 4i|m| ˙̃φJlm

+ x2Ulm,xx − 4xUlm,x + 4Ulm + 2x2βlm,x = x(2Dlm +Blm). (19)

Thus, the derivative of (19) with respect to x yields a third order differential equation for

Jlm, i.e.,

− 2x3Jlm,xxx − 6x2Jlm,xx − 4i|m| ˙̃φxJlm,xx + x2(l + 2)(l − 1)Jlm,xx

+ 2x(l + 2)(l − 1)Jlm,x + x2Ulm,xxx − 2xUlm,xx

+ 4xβlm,x + 2x2βlm,xx = (2Dlm +Blm) + x(2Dlm,x +Blm,x). (20)

After this, notice that it is possible to obtain x2Ulm,xxx just deriving (17b) with respect to

x,

x2Ulm,xxx = −x2(l + 2)(l − 1)Jlm,xx − x(l + 2)(l − 1)Jlm,x + xUlm,xx

− 6xβlm,x − 2x2βlm,xx + xBlm,x. (21)

Then, substituting it in (20) and simplifying one obtains

− 2x3Jlm,xxx − 6x2Jlm,xx − 4i|m| ˙̃φxJlm,xx + x(l + 2)(l − 1)Jlm,x

− xUlm,xx − 2xβlm,x = 2xDlm,x +Blm + 2Dlm. (22)

Making the derivative of (22) with respect to x, and substituting xUxxx from (21) one finds

a fourth order differential equation for Jlm, namely

− 2x4Jlm,xxxx − 12x3Jlm,xxx − 12x2Jlm,xx − 4i|m| ˙̃φxJlm,xx − 4i|m| ˙̃φx2Jlm,xxx

+ 2x(l + 2)(l − 1)Jlm,x + 2x2(l + 2)(l − 1)Jlm,xx + 4xβlm,x − 2xUlm,xx

= 2xBlm,x + 2x2Dlm,xx + 4xDlm,x. (23)

Finally, solving (22) for Ulm,xx and substituting into (23), a differential equation containing

only Jlm with source terms is obtained, namely

− 2x4Jlm,xxxx − 4x2
(

2x+ i|m| ˙̃φ
)

Jlm,xxx

+ 2x
(

2i|m| ˙̃φ+ x(l + 2)(l − 1)
)

Jlm,xx = Hlm(x), (24)
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where

Hlm(x) = 2xBlm,x + 2x2Dlm,xx − 8xβlm,x − 2Blm − 4Dlm (25)

represents the source terms.

In order to reduce the order of this differential equation, one defines

J̃lm = Jlm,xx, thus,

− 2x4J̃lm,xx − 4x2
(

2x+ i|m| ˙̃φ
)

J̃lm,x + 2x
(

2i|m| ˙̃φ+ x(l + 2)(l − 1)
)

J̃lm = Hlm. (26)

For the vacuum, this differential equation turns homogeneous, i.e., Hlm = 0, and hence (26)

is reduced to the master equation presented by Mädler in [18]

−x3J̃lm,xx − 2x
(

2x+ i|m| ˙̃φ
)

J̃lm,x +
(

2i|m| ˙̃φ+ x(l + 2)(l − 1)
)

J̃lm = 0. (27)

Making l = 2, this master equation reduces to those presented previously in [10] for the

Minkowski’s background i.e.,

−x3J̃lm,xx − 2x
(

2x+ i|m| ˙̃φ
)

J̃lm,x + 2
(

i|m| ˙̃φ+ 2x
)

J̃lm = 0.

The derivation of the master equation for the Schwarzschild’s background follows the same

scheme. In this case the master equation is given by

Jlm,xxxxx
4(2Mx− 1) + Jlm,xxx

(

2x3(7Mx − 2)− 2ix2 ˙̃φ |m|
)

+ Jlm,xx

(

2ix
˙̃
φ |m| + (l − 1)(l + 2)x2 + 16Mx3

)

= Glm(x), (28)

where M is the mass of the central static black-hole and Glm(x) represents the source term,

which is given by

Glm(x) =
Hlm(x)

2
. (29)

It is important to observe that M = 0 effectively reduces (28) to (24).

Defining J̃lm = Jlm,xx, the order of the differential equation (28) is reduced, namely

J̃lm,xxx
4(2Mx− 1) + J̃lm,x

(

2x3(7Mx− 2)− 2ix2 ˙̃φ |m|
)

+ J̃lm

(

2ix ˙̃φ |m|+ (l − 1)(l + 2)x2 + 16Mx3
)

= Glm(x). (30)
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IV. FAMILIES OF SOLUTIONS TO THE MASTER EQUATION

Now, the families of solutions to the master equations (24) and (28) associated with the

linear approximation in the Minkowski and the Schwarzschild’s space-times are explicitly

shown.

To proceed, consider that l is an integer and greater than or equal to zero, i.e., l ≥ 0, the

constants of integration Ci are complexes Ci ∈ C, i = 1..4, and arabic lower case letters

represent real constants, i.e., a, b, c, d, e, f, · · · ∈ R

It is worth stressing that the applicability of the present work has some limitations, since

in the context of the characteristic formulation the matter fields must be known a priori

throughout the spacetime.

A. The Minkowski’s background

First, let us consider the most simple case corresponding to the nonradiative, m = 0,

Minkowski’s master equation without sources (27). Assuming the ansatz Jlm = xk, we

obtain immediately

(k − l + 1)(k + l + 2) = 0

whose roots leave us to the general family of solutions,

J̃l0(x) = C1x
l−1 + C2x

−(l+2). (31)

Thus, integrating the last equation two times and rearranging the constants one obtains

families of solutions to (24) of four parameters for the vacuum,

Jl0(x) = C1x
l+1 + C2x

−l + C3x+ C4. (32)

When the source term is not null, we find that the nonradiative family of solutions, m = 0,

to the inhomogeneous equation (26) reads

J̃l0(x) =C1x
l−1 + C2x

−(l+2) + x−(l+2)

∫ x

a

dy
H(y)yl−1

2l + 1
− xl−1

∫ x

b

dy
H(y)y−(l+2)

2l + 1
, (33)

where a and b are real constants. Therefore, integrating two times with respect to x and

rearranging the constants we find the family of solutions to the inhomogeneous master

11



equation (24), for m = 0,

Jl0(x) =C1x
l+1 + C2x

−l + C3x+ C4 +

∫ x

a

dv

∫ v

b

dww−(l+2)

∫ w

c

dy
H(y)yl−1

4l + 2

−
∫ x

d

dv

∫ v

e

dwwl−1

∫ w

f

dy
H(y)y−(l+2)

4l + 2
, (34)

where it is clear that the analyticity of the solutions depends on the existence and analyticity

of the integrals. If the source term is disregarded, then (34) is reduced immediately to (32).

Now, we will consider the case for a radiative family of solutions, m 6= 0, |m| ≤ l for l > 0,

without source term. In this case (27) becomes a Bessel’s type differential equation. Mädler

[18] previously shows that the general solutions to this master equation can be expressed as

a linear combination of the first and second kind spherical Bessel’s functions. We find here

that the family of solutions to the master equation (27) can be expressed in terms only of

the first kind Bessel’s functions, as

J̃lm =
C12

1

2
−2lz3/2e

1

2
i(πl+2z)Γ

(

1
2
− l
)

(

KJ−l− 1

2

+ LJ 1

2
−l

)

(l − 1)l

+
iC22

2l+ 5

2z3/2eiz−
iπl
2 Γ
(

l + 3
2

)

(

KJl+ 1

2

+ LJl− 1

2

)

(l + 1)(l + 2)
, (35)

where the argument of the first kind Bessel’s functions Jn are referred to z, which is defined

as

z =
|m| ˙̃φ
x

, (36)

and the coefficients K, L and S are,

K = −i(l(l − 1) + 2iz)− 2z(l − iz), (37a)

L = −2z(z − i), (37b)

S = l(l − 1) + 2iz. (37c)

Integrating two times (35), and rearranging the constants we find the family of solutions

that satisfies (24), i.e.,

Jlm =−
iC12

1

2
−2l ˙̃φ2 |m|2 z−1/2e

1

2
i(πl+2z)Γ

(

1
2
− l
)

(

−2zJ 1

2
−l + SJ−l− 1

2

)

l2 (l2 − 1)

−
C22

2l+ 5

2
˙̃
φ2 |m|2 z−1/2e−

1

2
i(πl−2z)Γ

(

l + 3
2

)

(

2zJl− 1

2

+ SJl+ 1

2

)

l(l + 1)2(l + 2)

+ C3 + C4

˙̃φ|m|
z

. (38)
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When matter is considered, we found that the family of solutions to (27) becomes,

J̃lm =
2

1

2
−2lz3/2 (C1 +D1) e

iπl
2
+izΓ

(

1
2
− l
)

(

KJ−l− 1

2

+ LJ 1

2
−l

)

(l − 1)l

+
i22l+

5

2z3/2 (C2 +D2) e
iz− iπl

2 Γ
(

l + 3
2

)

(

KJl+ 1

2

+ LJl− 1

2

)

(l + 1)(l + 2)
, (39)

where the coefficients K and L were defined above, and the terms representing sources are

D1 = −
∫ |m| ˙̃φ/z

|m|
˙̃
φ

dz̃
22l−

5

2 z̃−1/2e−
1

2
i(πl+2z̃)Γ

(

l + 1
2

)

(

KJl+ 1

2

− LJl− 1

2

)

(l + 1)(l + 2) ˙̃φ2 |m|2
H

(

˙̃φ |m|
z̃

)

, (40a)

and

D2 =− i

∫ |m|
˙̃
φ/z

|m| ˙̃φ

dz̃
2−2l− 9

2 z̃−1/2e
1

2
i(πl−2z̃)Γ

(

−l − 1
2

)

(

KJ−l− 1

2

+ LJ 1

2
−l

)

(l − 1)l
˙̃
φ2 |m|2

H

(

˙̃
φ |m|
z̃

)

, (40b)

where the argument of the first kind Bessel’s functions Jn is z, which is defined just in (36).

It is worth noting that in this form, it is clear that (39) converges immediately to (35), when

the sources are not considered.

Integrating (39) two times we obtain the general family of solutions to the master equation

with sources, which reads

Jlm =−
iC12

1

2
−2l ˙̃φ2 |m|2 z−1/2e

1

2
i(πl+2z)Γ

(

1
2
− l
)

(

−2zJ 1

2
−l + SJ−l− 1

2

)

l2 (l2 − 1)

−
C22

2l+ 5

2
˙̃φ2 |m|2 z−1/2e−

1

2
i(πl−2z)Γ

(

l + 3
2

)

(

2zJl− 1

2

+ SJl+ 1

2

)

l(l + 1)2(l + 2)

+

∫ z

b

dy

∫ y

a

dz̃





2
1

2
−2lz̃3/2D1e

iπl
2
+iz̃Γ

(

1
2
− l
)

(

KJ−l− 1

2

+ LJ 1

2
−l

)

(l − 1)l

+
i22l+

5

2 z̃3/2D2e
iz̃− iπl

2 Γ
(

l + 3
2

)

(

KJl+ 1

2

+ LJl− 1

2

)

(l + 1)(l + 2)





+ C3 + C4

˙̃
φ|m|
z

. (41)

These families of solutions are particularly interesting and useful to explore the dynamics

of matter clouds immersed in a Minkowski’s background.
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B. The Schwarzschild’s background

Now, we show the nonradiative families of solutions, m = 0, for the vacuum i.e., G(x) =

0, for equation (30). The solution is expressed in terms of the hypergeometric functions

2F1(a1, a2; b; z), as

J̃lm =(−2)−l−2C1M
−l−2x−l−2

2F1(2− l,−l;−2l; 2Mx)

+ (−2)l−1C2M
l−1xl−1

2F1(l + 1, l + 3; 2l + 2; 2Mx). (42)

Integrating two times, we find the family of solutions to (28)

Jlm =
C1(−1)−l2−l−2(Mx)−l

3F2(−l − 1, 2− l,−l; 1− l,−2l; 2Mx)

l(l + 1)M2

+
C2(−1)l+12l−1x(Mx)l 3F2(l, l + 1, l + 3; l + 2, 2l + 2; 2Mx)

l(l + 1)M
+ C3x+ C4, (43)

where, pFq(a1, · · · ap; b1, · · · , bq; z) are the generalized hypergeometric functions.

When we consider the source terms, i.e., H(x) 6= 0, the nonradiative solutions to (30) reads,

J̃lm =(−1)1−l2−l−2M−l−2x−l−2
(

A2(−1)2l22l+1M2l+1x2l+1
2F1(l + 1, l + 3; 2l + 2; 2Mx)

−A1 2F1(2− l,−l;−2l; 2Mx)) + C1(−2)−l−2M−l−2x−l−2
2F1(2− l,−l;−2l; 2Mx)

+ C2(−2)l−1M l−1xl−1
2F1(l + 1, l + 3; 2l + 2; 2Mx) (44)

where A1, A2 are given by the integrals

A1 = −
∫ x

a

dy
(−2)l+2H(y)M l+2yl 2F1(l + 1, l + 3; 2(l + 1); 2My)

B1 +B2
, (45a)

A2 =

∫ x

b

dy
(−2)1−lH(y)M1−ly−l−1

2F1(2− l,−l;−2l; 2My)

B1 +B2
, (45b)

and the functions B1 and B2 are

B1 =(2My − 1)((l − 2) 2F1(3− l,−l;−2l; 2My) 2F1(l + 1, l + 3; 2(l + 1); 2My), (46a)

B2 = 2F1(2− l,−l;−2l; 2My)(2 2F1(l + 1, l + 3; 2(l + 1); 2My)

+ (l + 1) 2F1(l + 2, l + 3; 2(l + 1); 2My))). (46b)

For the radiative (m 6= 0) family of solutions to the master equation (30) for the vacuum,

we find that its most general solution is given by

J̃lm =C1Le
2α
xM x−4 + C2K (2Mx− 1)4α−2 x−2−4αe

2α
xM , (47)
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with

L = HC (−4α, β; γ, δ, ǫ, η) and K = HC (−4α,−β; γ, δ, ǫ, η) , (48)

where HC(α, β; γ, δ, ǫ, η) are the confluent Heun’s functions and their parameters are given

by

α = i ˙̃φmM, β = 2− 4α (49a)

γ = 2, δ = 8α(α− 1) (49b)

ǫ = −(l + 2)(l − 1)− 8α(α− 1) η =
2Mx− 1

2Mx
. (49c)

Finally, we present the analytical family of solutions to (30) in the radiative case, m 6= 0,

when the source terms are considered,

Jlm =− 8Me
2a
Mx

(

−LMx +M2x2L+ L/4
)

A1x
−4 (2Mx− 1)−2

+ 2Me
2a
Mxx2−4a (2Mx− 1)4a A2Kx−4 (2Mx− 1)−2

+ C1Le
2a
Mxx−4 + C2Ke

2a
Mxx−2−4a (2Mx − 1)−2+4a , (50)

where A1 and A2 are the integrals

A1 =

∫ x

a

dx̃
x̃2H(x̃)e−

2a
Mx̃K

−4LKMx̃+ 8LKaMx̃ − LS + 2LMx̃S +KR− 2KMx̃R
(51a)

A2 =

∫ x

b

dx̃
4x̃4ae−

2a
Mx̃H(x̃) (Mx̃− 1/2)2 (2Mx̃− 1)−4a L

−4LKMx̃+ 8LKaMx̃ − LS + 2LMx̃S +KR− 2KMx̃R
, (51b)

where S and R are the derivative of the Heun’s functions, i.e. S = K ′(x) and R = L′(x), in

which we suppress all indices except one which gives the functional dependence.

V. FAMILIES OF SOLUTIONS FOR l = 2

Now, we show that the families of solutions found here are reduced to those previously

reported in the literature for l = 2. Thus, for this particular value of l we obtain that the

family of solutions to the master equation for the vacuum, (27) takes the explicit form

J̃lm = E1x+
E2e

2i
˙̃
φ|m|
x

(

6x3 ˙̃φ |m| − 6ix2 ˙̃φ2 |m|2 − 4x ˙̃φ3 |m|3 + 2i ˙̃φ4 |m|4 + 3ix4
)

4x3 ˙̃φ5 |m|5
(52)
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Now, substituting l = 2 in the family of solutions (35), one obtains

J̃lm =
iC1

˙̃φ3 |m|3 e 2i
˙̃
φ|m|
x

6x3
− 40iC2

˙̃φ3 |m|3 e 2i
˙̃
φ|m|
x

x3
− C1

˙̃φ2 |m|2 e 2i
˙̃
φ|m|
x

3x2
+

80C2
˙̃φ2 |m|2 e 2i

˙̃
φ|m|
x

x2

− iC1
˙̃φ |m| e 2i

˙̃
φ|m|
x

2x
+

120iC2
˙̃φ |m| e 2i

˙̃
φ|m|
x

x
+

1

2
C1e

2i
˙̃
φ|m|
x − 120C2e

2i
˙̃
φ|m|
x

+
iC1xe

2i
˙̃
φ|m|
x

4
˙̃
φ |m|

+
iC1x

4
˙̃
φ |m|

− 60iC2xe
2i

˙̃
φ|m|
x

˙̃
φ |m|

+
60ix
˙̃
φ |m|

. (53)

Both family of solutions, (52) and (53), are completely equivalent. Note that, the transfor-

mation between the constants, necessary to pass from (52) to (53) is given by

E1 =
i (C1 + 240C2)

4 ˙̃φ |m|
, E2 =

1

3
(C1 − 240C2)

˙̃
φ4 |m|4 . (54)

Note that for the Schwarzschild case, when no sources are present, the master equation (30),

for the vacuum and l = 2 takes the explicit form

x2(2Mx− 1)J̃lm,xx + 2x(7Mx− 2)J̃lm,x + (16Mx+ 4)J̃lm = 0. (55)

Its family of solutions is

J̃lm =
C1

x4
− C2 (16M

4x4 + 32M3x3 − 44M2x2 − 4Mx+ 12(1− 2Mx)2 log(1− 2Mx) + 7)

64M5x4(1− 2Mx)2
.

(56)

Now, specializing the solutions (42) for l = 2, we find a totally equivalent solution, i.e.,

J̃lm =
D1

16M4x4
+

5D2 (2Mx (2M3x3 + 4M2x2 − 9Mx+ 3) + 3(1− 2Mx)2 log(1− 2Mx))

8M4x4(1− 2Mx)2
.

(57)

Thus, a simple Maclaurin series expansion of both solutions shows that the relationship

between the constants is

D1 =
64C1M

5 − 7C2

4M
, D2 = − C2

10M
. (58)

Finally, given that the known family of solutions for l = 2 is written in terms of power of

series around the point r = 2M , as shown in [10], we expand the radiative family of solutions

for the master equation (28) around the same point r = 2M for l = 2. Thus, we observe

that the confluent Heun’s function HC(−4α, β; γ, δ, ǫ, η) is expressed as a Taylor series for
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the parameters (49) around η = 0, namely

HC(−4α, β; γ, δ, ǫ, η) ≃1 +
((4a + 1)2 − 5 + (l − 1)(l + 2)) η

−3 + 4 a

+
1

8(a− 1)(4a− 3)

((

256a4 + 192a3 + 32a2
(

l2 + l − 5
)

+ 4a
(

4l2 + 4l − 39
)

+ l4 + 2l3 − 17l2 − 18l + 72
)

η2
)

, (59)

and for the confluent Heun’s function HC(−4α,−β; γ, δ, ǫ, η),

HC(−4α,−β; γ, δ, ǫ, η) ≃1− (4a + l2 + l) η

4a− 1
− (12a− l4 − 2l3 + l2 + 2l) η2

8a(4a− 1)
. (60)

Then, from (59) and (60) we obtain that around to r = 2M , (47) at first order for l = 2,

J̃lm =C1

(

16e4α(4α + 12)ηM4

4α− 3
+ 16e4αM4

)

− 24α+2C2e
4α (16α2 + 16α + 2) η4α−1

(

1
M

)−4α−2

4α− 1

+
24α−1C2e

4α (256α4 + 576α3 + 384α2 + 132α+ 24) η4α
(

1
M

)−4α−2

α(4α− 1)

− 24α+1C2e
4α (256α5 + 896α4 + 1056α3 + 636α2 + 228α+ 72) η4α+1

(

1
M

)−4α−2

3α(4α− 1)

+ 24α+2C2e
4αη4α−2

(

1

M

)−4α−2

, (61)

that are just the family of solutions for the master equation obtained using power series

around r = 2M .

VI. SUMMARY AND CONCLUSIONS

In this work we report new solutions to the master equation when a flat background

is considered, generalizing the results obtained by Mädler [18] with the inclusion of source

terms. Likewise, we reexpress the family of solutions for the vacuum using only Bessel’s

functions of the first kind.

Bishop [10] already found the solutions to the field equations in the space-time exterior to

a static and spherically symmetric black-hole, for l = 2, but only by expanding the metric

variables in power series around the coordinate singularity r = 2M , and in an asymptotic

expansion near the null infinity. However his solutions depend on the order of the expansion

and in this sense it is an approximation. We report for the first time in the literature the

exact solutions to the master equation in terms of the hypergeometric (Heun’s function) for
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the nonradiative (radiative) modes with and without source terms. Considering the solu-

tions for l = 2 we also show the equivalence between our solution and those reported in the

literature.

Finally, notice that the importance of these analytical results is in the fact that it can be

useful in the construction of semianalytical models for matter distributions for this regime,

like thin and thick shells or stars composed of layers obeying some equation of state. How-

ever, as already mentioned, it is important to bear in mind that the matter fields must be

known a priori throughout the spacetime.
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