
  

S T AT I S T I C A L P R O P E RT I E S  O F  
S A R  D ATA A N D  T H E I R  

C O N S E Q U E N C E S  

ALEJANDRO C. FRERY1  
CORINA DA C. FREITAS2 

SIDNEI J. S. SANT’ANNA2 
CAMILO D. RENNÓ2  

 
1UNIVERSIDADE FEDERAL DE PERNAMBUCO 

DEPARTAMENTO DE INFORMÁTICA 
CP 7851 

50732-970 RECIFE,  PE 
BRAZIL 

 
2INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS 

DIVISÃO DE PROCESSAMENTO DE IMAGENS 
AV.  DOS ASTRONAUTAS,  1758 

12227-010 SÃO JOSÉ DOS CAMPOS,  SP 
BRAZIL 

AB STRA CT 

After reviewing some classical statistical hypothesis commonly used in image 
processing and analysis, this paper presents some statistical properties of synthetic 
aperture radar (SAR) data. The main focus is on how these specific hypothesis deviate 
from the classical ones, and on the impact these deviations have on processing and 
analysis techniques. The multiplicative model, an important tool for SAR data modeling 
and analysis, is recalled. The work is more focused in the ideas than on equations. A 
selection of books and papers is collected, aiming at presenting some bibliographic 
references for the interested reader. 

INTROD UCTION 

Statistical tools have long been used to tackle some problems related to images. The 
stochastic nature of these objects, and the excellent results frequently obtained with this 
statistical approach, has stimulated the development of a vast bulk of methods and 
techniques. 

Most of these tools are based either on quite mild hypothesis (for instance, histogram 
equalization that assumes no distribution at all) or on the Gaussian distribution (Wiener 
filter, usual maximum likelihood classification, etc.). The weaker the hypothesis about 
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the distributional properties of the data, usually, the smaller the chances of making a 
mistake and the weaker the derived tools. When no hypothesis is made about the 
distributional properties of the data, the risk of making a mistake does not exist but, as 
an expected counterpart, the strength of the derived tools is quite limited. It is, therefore, 
desirable to tailor techniques to correct models, in order to have successful methods for 
processing and understanding the data. The reader interested in those general techniques 
is encouraged to check, for instance, the textbooks [10], [11] or [17]. 

The Gaussian distribution is frequently used because, among other reasons, there are 
many techniques associated to this hypothesis. This distribution has been granted as the 
default option for two centuries, and its properties are well known and many 
computational methods are available to deal with it. An additional appeal of the 
Gaussian distribution is that the sum of many small random contributions tends to 
behave, under certain mild conditions, as a random variable governed by a Gaussian 
law. 

This last statement, known the Central Limit Theorem (see [2] for instance), says 
that the behavior of a complex system may be characterized by the Gaussian distribution 
if this behavior is seen through the sum of a large number of small contributions, which 
are not too heavily correlated. This result is extremely useful, since it allows the 
modeling of virtually any random process, provided it can be posed in the proper form. 

Most classical tools, i.e., those deriving from this Central Limit Theorem, rely on the 
Gaussian hypothesis. These tools aim at improving the visual quality of the data 
(contrast enhancement and filters, for instance), at reducing the dimensionality (principal 
component transformation), at segmenting or classifying images (maximum likelihood 
classification, cluster analysis, etc.). That hypothesis is seldom checked in the practice, 
since experience shows that it can be assumed valid, at least for optical data under some 
conditions. 

When SAR images are used, instead of optical data, the exception becomes the rule: 
the Gaussian hypothesis is seldom confirmed. This is mainly due to the coherent nature 
of the illumination, and the consequences of this departure range from poor results, 
when classical tools are applied, to the need of studying and proposing new methods for 
SAR image processing and analysis. 

SAR IMAGES 

Why using SAR images, if most of the tools we already have do not work properly 
with them? 

In spite of this disadvantage (and this is not the only one, as we will see), SAR 
images are considered one of the greatest technological leaps in remote sensing. The 
reader is invited to browse any remote sensing Journal and to count the number of 
papers devoted to this technology. This subject is treated in general remote sensing 
books (as [17] for instance), and references [15], [21], [22] and [23] are among those 
solely devoted to remote sensing with SAR. Some virtues of this kind of images are 
briefly commented below. 
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• They are related to the dielectric properties of the target returning, thus, 
information that may not be visible to optical sensors. In other words, the 
information retrieved by SAR and optical sensors is very different. 

• SAR systems can operate at different frequencies and polarizations, and each 
combination extracts different kinds of information from the same target. 

• They are sensitive to microtextures as, for instance, differences between calm 
and rippled water surfaces. In this way, it is possible to infer about the presence 
or absence of wind over lakes, the sea, etc. 

• Their spatial resolution is related to the power of the emitted signal and to the 
kind of processing. Fine spatial resolutions can be attained, even with orbital 
platforms. 

• Good quality digital elevation models can be generated. 

• Microwave radiation penetrates, to some extent and depending on frequency, 
polarization and other physical parameters, the soil and canopies. 

• These images are, to some extent, weather-independent since the wavelength 
used is almost unaffected by clouds, fog, rain, etc. 

• Radar sensors are able to operate during the night, because they are active and, 
thus, carry their own source of illumination. 

These advantages, and the forthcoming disadvantages, are the direct consequence of 
the technology used. It is quite far from the aim of this paper to present a detailed 
discussion about the generation of SAR images. The interested reader is referred to [15], 
[21] and to [23]. It should suffice to say that a SAR image is formed by sending a 
microwave signal towards the target and by recording and processing the reflected echo. 
The illumination used is coherent, and it can be proved (see [9] for instance) that when 
this technique is used a special kind of noise appears: speckle noise. 

Other disadvantage arises from the need of delicate, dedicated and expensive 
systems for SAR image generation. It is convenient to recall that these images are 
formed using electromagnetic signals, complex by nature. Figure 1 shows the same area, 
as seen in the real and imaginary components of the image and, after some processing, in 
the linear (amplitude) and intensity (quadratic) detections. More examples about 
representations or formats of SAR data can be seen in [15]. 

In the complex components it is utterly impossible to see any information. This is 
due to the fact that, in that format, different targets are separated by different variances; 
nature led our visual system to develop the ability to separate different objects by their 
means (brightness) or their colors. Natural selection was not aware that mankind would 
eventually build SAR systems! 

The mere visual interpretation of these images is a delicate problem, as the reader 
may feel looking again at Figure 1 (obtained with an airborne SAR over 
Oberpfaffenhofen, Germany). Another difficulty arises when one tries to relate the 
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observed data to physical parameters, such as vegetation type, biomass, etc. Visual 
interpretation is not obvious when the source of information is SAR data, mainly 
because most visual interpreters have been trained with optical data. 

Other problem related to these images is their geometric distortion, caused by the 
fact that the SAR measures distances to the targets (RADAR is an acronym from RAdio 
Detection And Ranging). This geometric distortion is heavier to taller objects (such as 
mountains, trees, buildings, etc.). The three main effects due to this distortion are 
foreshortening, shadowing and layover, and their are heavier in airborne SAR systems 
than in orbital platforms. 

Speckle noise is one of the most serious disadvantages of SAR images. It defies 
every classical hypothesis, since it is not Gaussian, it enters the signal in a non-additive 
fashion, and it depends on the true value. In order to combat this noise, besides filters, 
there is a technique called Multilook Processing, that aims at speckle reduction. This 
technique is often applied during the image formation process, and its use (as the use of 
filters) yields to a resolution loss. In this manner, there is a tradeoff between the visual 
quality related to noise and the resolution. 

In the following sections a very successful (statistical) model for this noise, and for 
SAR images, will be seen. It will be the main subject of the forthcoming sections. 
Before jumping into statistical modeling, we should convince ourselves that it is worth 
the effort. Let us recall that visual improvement (contrast enhancement, filtering, etc.), 
segmentation, classification, and analysis all depend on the quality of the available 
models for the data. At this point, the reader is required to believe that there are good 
statistical models for the images we are considering in this work. These models are 
encompassed by the so called Multiplicative Model. 

THE MU LTIPLICATI VE MODEL 

There are essentially two ways of modeling SAR images: with an ad hoc approach 
and through the use of physical models. The former indicates that the first thing to do is 
fitting Gaussian distributions to the data; the result of doing this, for three different 
areas, is shown in Figure 2. 

In this figure three samples of extended areas were selected, corresponding to 
pasture, forest and an urban region. The mean and standard deviation of three Gaussian 
distributions were estimated, and the corresponding histograms and fitted densities are 
shown. It is quite clear that this sample of pasture could be modeled by this distribution 
to some extent, but is it is noticeable that forest and urban data are quite far from 
admitting this hypothesis. 

The ad hoc approach requires discarding the Gaussian distribution whenever it is not 
acceptable, and looking for another one, and so on until a suitable distribution is found. 
The success of this approach depends, essentially, on the size of the available library of 
distributions. 

This way of applying statistics eventually leads to a distribution that fits well the 
data, but it is not immediate how to associate a meaning to that fitting. Some usual 
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distributions belonging to this statistical vocabulary are the Weibull (see [3]), the 
Lognormal (used, for instance, in [15]) and the scaled Beta. The use of these and other 
distributions is presented in [26], and in many of the references therein. 

The other approach, instead of looking for the distribution that best suits the data, 
offers a limited set of distributions, but all of them have a physical interpretation. This 
modeling, based on the physics of the image formation, can be seen in detail in [9] and 
in [15]. It is based on the fact that the illumination is made with coherent radiation, and 
on that the involved signals interfere in a constructive and destructive manner, 
introducing a certain degree of roughness in the observed targets. 

At this point it is convenient to recall that the speckle noise, which is suitably 
modeled within the multiplicative model, appears in every image obtained with coherent 
illumination. Examples of these are SAR, sonar, ultrasound and laser images. 

For the sake of simplicity, only quadratic detection (intensity data) will be treated 
here. The curious reader is referred to [3], [4], [6] and [7] for a treatment of the other 
cases, namely complex and amplitude data. 

The multiplicative model states that the observed intensity data is the outcome of the 
random variable Z  which, in turn, is the product of two independent random variables: 
X , associated to the terrain backscatter, and Y , which models the speckle noise. 
Depending on the distributions associated to these last two, will be the resulting 
distribution for the return. 

As previously commented, this speckle noise is combated with many techniques, 
multilook processing among the most successful ones (see [5], [12] and [18] for the 
other approach: speckle reduction with filters). Physics allows to say that, for multilook 
images, speckle noise obeys a Gamma distribution. This means that the density of the 
random variable Y  is 
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where αK  denotes the modified Bessel function of the third kind and order α , and 
parameters space given by the set 
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The resulting distribution for YXZ ⋅=  is called Intensity G, and its main properties 
and special cases can be seen in the aforementioned references. What is noteworthy is 
that, in spite of the relative complexity of its two components (Gamma and Generalized 
Inverse Gaussian distributions), the Intensity G distribution has a density with closed 
analytical form. 

This Intensity G distribution has particular cases can be related to homogeneous 
areas (such as the pasture one shown in Figure 2), to heterogeneous areas (such as the 
forest one, same figure) and to extremely heterogeneous regions (as was the case of the 
urban area of that figure). The degree of homogeneity of returned signal depends on the 
target as well as on the configuration of the sensor (wavelength, polarization, altitude, 
incidence angle, etc.). 

Those special cases are related to restrictions on the aforementioned parameters 
space, where α  plays the role of a measure of homogeneity. 

Three relevant questions rise now, namely: 

1. Is this distribution quite different from the tractable and familiar Gaussian one? 

2. Is it possible to estimate those parameters from the available data? 

3. Does it fit well the observations? 

Probably the most relevant is the third one, since the former two only make sense if 
the effort of using the Intensity G is worthy. Figure 3 shows the result of fitting special 
cases of this distribution to the same set of data presented in Figure 2, and the results 
could not be better. Other (quite successful) results of fitting hard-to-model data are 
presented in [4] and [25], where the quality of the fitting is assessed through statistical 
goodness-of-fit tests, rather than using visual inspection. 

The answer to the second question, if it is possible to estimate the relevant 
parameters, is yes. It is possible to use the substitution (or moment) method, and 
standard numerical tools, to perform this estimation. More specialized (and, hopefully, 
better) estimation techniques are currently under study [24]. 

The first question is, probably, already answered when comparing Figures 2 
(obtained with the Gaussian distribution) and 3. To put it more explicitly, Figure 4 
shows three densities corresponding to heterogeneous areas. They correspond to three 
values for the number of looks, and they are compared to a Gaussian density. It can be 
seen that the higher the number of looks, the closer they are but that there is a significant 
and consistent departure from the Gaussian distribution. In general, as presented in [3], 
the more heterogeneous and the lower the number of looks, the further the distribution 
within the multiplicative model is from the Gaussian distribution. 
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PARAMETER S AND N AT URE 

We have been dealing with very general statistical models, stated in a single class of 
distributions, that aim at describing every possible return in SAR images. We have also 
seen that these models perform well. A relevant question remains open: what does it 
mean? 

Fortunately, the multiplicative model allows us to use a single parameter in order to 
characterize the homogeneity of the observed target. This parameter, as previously 
stated, is α  and, as seen in the parameters, space it spans the whole real line. 

The other two parameters associated to the backscatter (namely λ  and γ ) work as 
scale parameters and, thus, are related to the brightness of the scene. The speckle has 
only one parameter associated to it, namely n . 

Going back to α , what does it mean selecting an interesting area and estimating its 
parameter with a certain estimator α̂  (the reader is required to believe that there are 
suitable estimators to perform this task (see, for instance [24], [26] and [27])? 
Fortunately, that value means a lot. This parameter is a measure of the homogeneity of 
the considered area. The higher its absolute value, the more homogeneous the observed 
data. Homogeneous areas are associated, for certain SAR sensors, to agricultural, pasture 
or deforested regions, so if a suspicious area yields to 3.17ˆ =α , a human and/or an 
automatic interpreter should fire an alarm because α̂  is too big for belonging to a 

peaceful primary forest (that should be heterogeneous). Such result of an estimation 
procedure would be enough evidence of a deforestation. Complementarily, if an area 
previously classified as pasture suddenly exhibits 9.1ˆ −=α  that value could be used as 
evidence of newly born manmade structures where cows should be feeding. 

Figure 5 illustrates the meaning of this homogeneity parameter, where the greener 
the more homogeneous and the redder the more heterogeneous the observed area. The 
funny striped black-and-red piece represents an area heterogeneous to an extent where 
no parameter estimation is feasible with current available techniques. 

While modeling and analyzing, which is what we have been doing so far, is quite 
interesting per se, all this effort is fully rewarded when we use this framework to tackle 
other kind of problems. The reader might be worried, with the impression that only three 
classes of land use can be detected with SAR images, namely those corresponding to 
homogeneous, heterogeneous and extremely heterogeneous returns. The technical 
report [27] shows how this is a mere didactic simplification, presenting in detail many 
more intermediate situations. 

Other derived measures (some of them of statistical nature, but not directly related to 
the multiplicative model) can be seen in [13], in [20] and in [28] used, respectively, to 
retrieve biomass in regenerating tropical forests, to discriminate types of crops and to 
relate SAR data to tropical forest regeneration stages. 
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FILTERS AN D CLASSIFICATION UNDER THE M ULTIPLICATI VE MODEL 

Filters are a very important class of tools. They transform the original images into 
new images, aiming at attaining certain goals. Some common goals are: reducing 
atmospheric attenuation (when optical images are used), reducing noise and enhancing 
certain characteristics in an image. On the other hand, classification aims at transforming 
images into maps. 

As has been previously seen, under the multiplicative model the parameter α  is a 
measure of homogeneity. In [14] this was used to produce, from a SAREX image, a 
texture image aiming at detecting regrowth stages. This image was built calculating α̂  
over small areas (called windows) in the image, and the resulting image was used as 
input for classification algorithms. It was there seen that this α̂  image retrieved very 
important information that, though present in the original data, was not evident without 
this processing stage. In [19] the same procedure was used to derive new features for 
Radarsat (a Canadian SAR sensor) image classification. 

In order to illustrate this point, Figure 6 shows an area (corresponding to a region 
where primary forest coexists with heavily managed parcels, secondary regrowth, etc., in 
Tapajós, Pará state, Brazil) as seen by Landsat-TM (optical data, in a color composite: 
Band 5 in red, Band 4 in green and Band 3 in blue) and by Radarsat. While the first 
exhibits a wide variety of classes (depicted by the many colors there observed), there is 
barely any visible information in the second one. The third image is the result of 
applying the α̂  filter to the SAR image, after which similar information to that from the 
optical image emerges. 

Noise reduction can also be attained after it has been so carefully modeled. 
Reference [5] offers a proposal of filters based solely on statistical hypothesis (on the 
multiplicative model) and on robust inference. Most of commonly used filters for 
speckle noise reduction use, to some extent, statistical modeling as can be seen in [12] 
and [18]. 

One of the most useful transformations in image processing is called classification. It 
takes an image as input, and generates a map as output or, in other words, it turns 
numbers into information. There are many ways of doing this: using neural networks, 
decision rules, mathematical morphology, etc. In this work the statistical approach is 
considered. 

The preferred statistical classification technique is called maximum likelihood. It 
consists of associating to every coordinate in the image that class which makes a certain 
measure of plausibility highest. This measure of plausibility is calculated using the 
densities that characterize every class. Examples of fitting densities to classes were 
presented in Figures 2 and 3, where it was also shown that the Gaussian distribution 
seldom is a good hypothesis for SAR data. A comparison of classification techniques is 
available in [19], for instance. 

In [8] and [25] it is presented a study on the effect of using the Gaussian and the 
correct (under the multiplicative model) distributions on the classification of areas using 
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SAR data. It was concluded that, though the use of the multiplicative model significantly 
improves the classification, the low signal-to-noise ratio of these images requires 
additional efforts to attain acceptable results. It was then presented a model for the 
classes, a deterministic algorithm for classification under this hypothesis (the ICM 
algorithm), and a user-friendly system that incorporates both the multiplicative model 
for the observations and this contextual modeling. The results are presented in Figure 7, 
where it is quite evident that there is an important improvement from the first to the 
second classification. In both classifications, cyan depicts primary forest, magenta clear 
cut and yellow second regrowth. The original image is from the JERS-1 over Tapajós. 
More classification results using the multiplicative model are under investigation, but 
preliminary results are consistent with the ones presented here. 

CONC LUSIONS 

The main consequences of a delicate statistical modeling of SAR data were 
presented. Though the topics here covered only scratch the surface of the subject, it has 
been shown how these images defy the classical Gaussian hypothesis. Nothing has been 
said about multivariate (polarimetric) data, about the analysis of phase, etc., but every 
time SAR data appears, the reader must be prepared to gracefully abandon the 
comfortable hypothesis that sustained the analysis and processing of optical images. 

The central idea is that a careful assessment of the statistical properties of synthetic 
aperture radar images is not only an academic exercise. This gymnastics, when properly 
performed, also yield to algorithms, techniques and methodologies that clearly improve 
the results and aid the use and analysis of this kind of images. 

Far from being a closed subject, the statistical modeling and analysis of SAR images 
is an active research area, being some of its greatest challenges finding suitable models, 
estimators and relations between parameters and physical quantities. 
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Figure 1 (top to bottom and left to right): real and 
imaginary parts, and amplitude and intensity formats of the 
same area. 
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Figure 2: Three types of targets, their histograms and their fitted 
Gaussian distributions. 

Figure 3: Histograms and fitted densities under the multiplicative model for the 
areas presented in Figure 2. 
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Figure 4: Three densities for heterogeneous return and 
different numbers of looks, and a Gaussian density. 
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Figure 5: Graphical representation of the meaning of the homogeineity parameter in the 
multiplicative model. 

Figure 6 (left to right): Landsat image, Radarsat image and the result of 
calculating the α̂  image over the SAR data. 
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Figure 7: (from left to right): Original JERS-1 image; Best Fit Maximum 
Likelihood classification (under the multiplicative model) and Best Fit ICM 
classification. 


