

SOFTWARE C&DH EMBARCADO EM NANOSSATÉLITES (ScdhNa)

FLEMING, E.¹, MATTIELLO, F.², ESSADO, M.³

¹Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP, Brasil Bolsista PIBIC-CNPq.

² Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP, Brasil

³ Emsisti – Sistemas Espaciais e Tecnologia, Franca, SP, Brasil

erik.fleming@inpe.br

Resumo.

O trabalho consiste no desenvolvimento do software de controle de atitude e de gestão de bordo (Data Handling) do nanossatélite NanosatC-BR2, referenciado por **ScdhNa**. Os estudos são realizados em ambiente de laboratório no INPE com o uso dos modelos de engenharia de ambos satélites (NanosatC-BR1 e NanosatC-BR2). Até o momento foi realizada a compatibilização do ambiente de desenvolvimento utilizando a IDE Eclipse com computador de bordo NanomindA712, com sistema operacional Ubuntu.versão 14.04.2.

Palavras-chave: Nanosatelite; NanosatC; NanosatC-BR2

1. Introdução

O objetivo é o desenvolvimento do software que realiza as funções de comando, manipulação de dados e aquisição de telemetria, embarcado do computador de bordo do satélite NanosatC-BR2, da classe CubeSat.

2. Metodologia

Foi realizada a instalação e configuração do ambiente de desenvolvimento do software do computador de bordo, foram criados documentos de requisitos e especificações com tabelas de relação de subsistemas, listas de comandos e diagramas de comunicação para melhor entendimento da integração dos subsistemas com o OBC e foi feita uma analise do ciclo de carga da bateria com o intuito de ter o conhecimento das limitações da mesma.

3. Resultados e Discussão

O monitoramento da bateria gerou resultados [1] que nos deram uma ideia de como ela se comportará durante os testes e possivelmente durante a operação

Os resultados mostraram que, apesar de o ciclo não ser totalmente linear, os valores permaneceram na faixa de tensão especificada pelo manual do subsistema de energia. Entre 6.5 e 8.5 volts.

Para a especificação e requisitos foi criada uma tabela [FLEMING, 2015] onde as linhas representam os modos de operação do OBDH e as colunas os subsistemas em operação em cada modo. As células em verde indicam que o subsistema deve estar em operação no correspondente modo e as células em vermelho indicam que o subsistema deve estar desabilitado no correspondente modo.

Modos de operação / Subsistemas	NanoMind OBC	ISIS VHF/UHF Transceiver	Magneto-torquer	Nano-Power	Solarpanels	Sondade Langmur (SLP)	Sistema de determinação de atitude (DAS)	FPGA	в <mark>М</mark> ДН	Magneto-meter
Idle	on	off	off	on	On	off	off	off	off	off
Deployment	on	on	off	on	on	off	off	off	off	off
Safe	on	on	off	on	on	off	off	off	off	off
Nominal	on	on	off	on	on	on	on	on	on	on
Stabilization	on	on	on	on	on	off	off	off	off	off

Tabela1-Modos de Operação e subsistemas.

4. Conclusão

O trabalho realizado produziu artefatos e definiu base para o projeto do software do computador de bordo do nanossatélite missão NanosatC-BR2. A experiência do trabalho contribuiu para uma melhor noção de projetos que reúnem varias equipes e a gestão delas como um todo.

Trabalhos futuros incluem o estudo das normas ECSS que definem os processos de desenvolvimento de software embarcado, o estudo do computador alvo, barramento de interfaces CAN e I2C e sistema operacional FreeRTOS e o desenvolvimento e validação do próprio software embarcado para a missão NanosatC-BR2.

Referências

- [1]Fleming, E.B., Relatório final de bolsa PIBIC/INPE-CNPq, 07/2015.
- [2] GOMSPACE. GOMX-Plataform. Disponível online em : http://gomspace.com/index.php?p=products-platforms.
- [3] INPE. Programa NanosatC-BR, Desenvolvimento de Cubesats. Disponível online em: http://www.inpe.br/crs/nanosat/>.