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Abstract: A modified computational operator for Gradient
Pattern Analysis is introduced into the framework of 2D-
Coupled Map Lattices (CML). The GPA coefficient is com-
puted taking into account different sizes and boundary con-
ditions for characterization of chaotic 2D-CML. In addition
to quantifying concentric asymmetries, GPA measures the
phase disorder associated with a given pattern. Simulations
of chaotic CML using Gaussian and random initial condi-
tions, provide interesting insights on the system gradual tran-
sition from order (concentric symmetries) to disorder (emer-
gence of concentric asymmetries).
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1. INTRODUCTION

Coupled Map Lattices (CMLs) are system discrete in time
and space, composed by grid elements that interacts with its
neighborhood, and can show chaotic behaviour [3]. The clas-
sical techniques to analyse dynamical system, as the Lya-
punov exponent can characterize the evolution of these sys-
tems, as shown in [2]. However some proprieties such as
symmetry breaking and regime are better described by tech-
niques which analyse the matrices among its gradient pattern.
An example of algorithm was proposed in [1], the Genera-
lyzed Entropic Form (GEF) which was also applied to anal-
yse the structure of CMLs, and determine flow regim. In
order to characterize structural patterns of CMLs and the pat-
tern evolution, we present a new version of Gradient Patttern
Analysis (GPA). In this version of GPA we introduce a new
technique for the symmetrical vector detection, which detect

the radial symmetry of systems providing precise results.

2. COUPLED MAP LATTICE

CMLs are non-linear spatially extended systems, that rep-
resents the dynamical any dimensional system. Given a ma-
trix A composed by elements a;, ,, where  and y represent
the position of the matrix and n the matrix time step, a tran-
sition function extensively used in type of simulation is the
global CML, that is show in equation 1, where ¢ is the cou-
pling factor, k£ and [ represent the neighborhood distance re-
spectively in z direction and y direction, and f(a) the appli-
cation of a map.
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Different behaviours can be observed according to the grid
dimensions, the type of boundary, the coupling factor and the
map. With respect to the grid, coupling factor, and bound-
aries, in this work we have used the following proprieties:

128x128 lattice

e Toroidal boundaries
e Von Neumann neighborhood
e c=05

An often map studied for model validation in CML is the
logistic map, with the parameter a = 4.0. Although any map
with chaotic behaviour can be used [3]. In this study we com-
pared three different maps: the Logistic map with chaotic



parameter a = 4.0, the Double map, and the Shobu Ose Mori
(SOM) map [5] with parameters « = 0.6, 8 = 0.2 which
also has chaotic behaviour. We selected this maps with these
parameters because every map show different behaviour near
their bending point, as show in figure 1.

Figure 1 — Three maps with different behaviours

3. GRADIENT PATTERN ANALYSIS

The Gradient Pattern Analysis is a technique that detects
the asymmetrical fragmentation of discrete systems, it was
proposed in [4]. This operator is composed by four steps:

e Gradient field estimation

e Symmetrical vector removal
e Triangulation

e Coefficient Estimation

In the first step is commonly applied a finite central differ-
ence, in some cases a filtering method can provide better re-
sults. In this method is proposed the remotion of vectors with
module smaller than 3% of the largest vector.

The analysis without the redundancies may provide better
profile of the system, then in the second step is estimated
the asymmetrical vector field, since the symmetrical gradient
field is a redundant data. In order to estimate the asymmet-
rical vector field is defined as a symmetrical group, a group
formed by pairs of vectors which the pair vector sum is a
vector with length approximately zero, and both vector hav-
ing opposite angle when related to an axis.

To define each group, usually applied the bilateral symme-
try vector removal, because its a linear algorithm. Although
this technique is very sensitive, and doesn’t detect some sym-
metries in complex extended systems. The bilateral removal
considers four axis of symmetry, comparing for each point
its equivalent in each axis.

In order to provide an accurate and robust method we pro-
pose a new technique for the symmetrical vector removal,
the radial symmetrical vector removal. The radial removal
technique is a bilateral removal technique extension, which
compares in many axis as possible. This process can be
done comparing points equidistant, because for every pair of
points in the same distance from the center there is an axis
that part those points. Since we want a robust method, in this
evaluation is not considered the angle of each vector in rela-
tion to the axis.

The third step is the triangulation where is applied the De-
launay triangulation, aiming to connect the remaining vector

field, providing the spatial structure representation.

The Gradient Asymmetric Coefficient (G 4), given the num-
ber of vectors (N,), and the number of Delaunay connections
(N,) is estimated using the equation 2.
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The values of G 4 ranges from O to 2, where O represents an
system totally symmetrical/ordered and 2 represents a sys-

tem asymmetrical/disordered. One example of G4 estima-
tion process is shown in the Figure 2.
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Figure 2 — Example of GPA operation sequence, starting from
matrix image (A): the gradient field (B),the asymmetric gradi-
ent field (C), and the triangulation(D). In C we can see N, = 6,
and in D we can see N. = 10, then according to the equation 2,
Ga= 106%6 ~ 0.6667

4. PRELIMINAR RESULTS

We estimated G4 in 175 iterations of each type of map,
starting from two initial conditions: a 2D-Gaussian which is
totally symmetric, and a randomized matrix which is asym-
metric. We want to see when the symmetry breaks in each
type of map. The Figures 3 show 5 snapshots of each map
iteration, while the Figure 4 show the G 4 evolution in each
map. As result we can see that SOM map and Double map
converged to an asymmetric system near the 50th iteration,
while the Logistic map converged near the 105th iteration.
The fluctuation observed in Logistic map iteration and in
Double map iteration before the convergence point in many
cases are caused by small structures formed near the bound-
aries, that can be causing the transition from symmetry to
asymmetry in this systems.

5. CONCLUSION

We developed a new robust technique for discrete dynam-
ical systems analysis, based on the system radial asymme-



try/disorder. This technique provided a consistent result, es-
pecially in the determination of the symmetry breaking it-
eration. As result we also observed the gradual structural
evolution of CMLs.
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Figure 4 — Using G 4 for tracking the pattern evolution from
SOM map, Double Map, and Logistic Map, starting with a 2D-
Gaussian matrix and randomized matrix



