Influence of anodic etching on carbon fiber substrate for TiO₂ deposition from TiCl₃ anodic hydrolysis

Lania Auxiliadora Pereira¹, Andrea Boldarini Couto¹, Neidenei Gomes Ferreira¹

¹Instituto Nacional de Pesquisas Espaciais

e-mail: lania.fisica@yahoo.com.br

Carbon fiber (CF)/TiO₂ composites appear as a very interesting electrode for photoelectrochemical processes to environmental applications, especially for the abatement of organic species in wastewater [1]. In this work, anodic pretreatments on CF produced at heat treatment temperature of 1000 °C were systematically studied. Emphasis was given in the influence of oxygen functional groups on the CF surface in the anodic hydrolysis of TiCl₃ for obtaining TiO₂/CF composites. The CFs were anodically polarized using 0.5 mol L^{-1} H₂SO₄ in a fixed potential of 2.0 V vs Ag/AgCl/KCl for 5, 10, 20 and 30 min to control the amount of oxygen as well as the type of carbon-oxygen groups on the CFs surfaces. The TiO₂ electrodeposition on CF1000 was performed under potentiostatic mode, at a fixed potential of 0.75 V during 30 min in a 5 mmol L^{-1} TiCl₃ (pH=2) + 0.01 mol L^{-1} KCl aqueous solution. Morphological, structural, and surface chemical changes were investigated by Scanning Electronic Microscopy with field emission guns (SEM-FEG), X-ray diffraction (XRD), Raman spectra, and X-ray photoelectron spectroscopy (XPS). XRD patterns did not present significant structural changes whereas Raman analyzes showed that the $I_{\rm D}/I_{\rm G}$ ratio decreased as function of anodization time as well as the FWHM concerning G band also decreased for anodization time of 30 min. XPS showed that oxygen functional groups particularly C-OH was more preeminent for anodic polarization of 30 min. For all substrates analyzed was TiO₂ deposition obtained successes with defined by TiO₂ Raman spectra. The SEM images showed the deposition of a very thin TiO_2 film. With an anodic polarization time increase, TiO₂ thickness also increased. This behavior may be associated to C-OH functional group present on CF1000 surface, enhancing the TiO₂ deposits.

Acknowledgements:

FAPESP, CAPES and CNPq.

References:

[1] Z. Wang, K. Yoshinaga, X.R. Bu, M. Zhang, Jounal of Hazardous Materials, **290**, 134 (2015)