
doi:10.6062/jcis.2016.**.**.**** Reis Junior et al. 1

Real-Time Cubesat Thermal Simulation using1

Artificial Neural Networks2
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6

Abstract7

In space systems engineering, the Operational Simulator (OS) is a8

computational tool that can be used to test and validate the ground9

control system, to train the flight control operators, and to support10

the operation of spacecrafts. In order to accomplish these tasks, the11

OS must produce data of all the spacecraft subsystems in real-time.12

Among these subsystems, the thermal control subsystem is one of the13

most demanding in terms of computational cost. In this work we use14

Artificial Neural Networks (ANN) to learn the thermal behavior of a15

simple CubeSat model, generated by a thermal analysis software, and16

then apply it to reproduce that behavior and to generalize for scenarios17

not presented during training. The results show that the ANNs can18

simulate the temperatures of the CubeSat with good fidelity and very19

low computational cost.20

21
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tems engineering, CubeSat, thermal control subsystem.23

24

1. Introduction25

The recent advancements in information technology and the increasing26

necessity to reduce cost and time has led to a new model of space systems27

engineering, in which computational modeling and simulation has become28

essential tools for design, development and operation of such systems. One of29

the main advantages of modeling and simulation is the reduction in the num-30

ber of hardware models built during the development of a spacecraft. Other31

advantages include lower costs, shorter times of development, adaptability32

to design modifications, no problems with transport or logistics, reusability33

in successive projects, etc. [1].34

Modeling and simulation can be used extensively during all the life cycle35

of a spacecraft, from the conception and design, to development and oper-36

ation. In this work, we are interested in a software tool that supports the37
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operations phase of satellites, called Operational Simulator (OS). This sim-38

ulator can be used before the launch of the satellite, to validate the ground39

control system, to train the ground operators and to test the operation plans,40

before applying them to the real system in orbit [2–4].41

The OS must be capable to be integrated with the ground control system42

and respond as if the actual satellite is being operated [5]. To meet this43

requirement, the simulator needs to run in real-time. Given the complexity44

of space systems, this can be very challenging.45

The design of the thermal control subsystem is usually supported by46

specialized software used for modeling and analysis [6]. In this software, the47

thermal system is discretized into a network of nodes (a few thousands for a48

medium satellite) and differential heat equations are integrated to compute49

the temperatures of these nodes for a specific scenario and at a given time.50

For this reason, high fidelity thermal simulations are computationally very51

expensive, which makes it difficult to use directly in an OS. So it is necessary52

to seek an alternative capable of providing data on the thermal behavior of53

the spacecraft in real-time with little loss of fidelity compared to the actual54

system.55

In the literature, there are basically two approaches to solve this problem56

[7–10]. The first one is to carry out an interpolation over a finite set of57

selected typical scenarios for which the thermal behavior is known. The58

disadvantage of this method is the uncertainty of the output for nonstandard59

scenarios. The second method consists in a simplification of the thermal60

model, reducing the number of nodes and interactions to save processing61

time in the integration of the differential equations. The drawback is the62

loss of accuracy, especially for the standard scenarios.63

Artificial Neural Networks (ANNs) have been successfully applied for the64

solution of problems in various fields of engineering [11–13]. Recently, we65

proposed the use of ANNs as a potential real-time quantitatively high fidelity66

estimator of the thermal behavior of a satellite in Earth orbit. This approach67

was utilized to reproduce the thermal behavior of a simple hypothetical68

nanosatellite [14] and of the Amazonia-1 satellite [15]. Here we return to the69

nanosatellite model, also called CubeSat [16], to investigate the capability of70

ANNs to generalize to scenarios not presented during the training process.71

72

2. Methodology73

The thermal model of the CubeSat was built using AutoCAD R© and74

Thermal Desktop R© software. This thermal CAD model, which can be seen75

in Fig. 1, consists of a square aluminum box of 10 x 10 x 10 cm, with three76
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printed circuit boards (PCBs; in green), each one containing one dissipative77

component (in red). The front walls are obscured so that the interior can78

be seen.79

The orbit used in simulations is polar (inclination equal 90◦) at 500 km of80

altitude. This gives a period of 6000 s or 100 min. The attitude is stabilized81

in 3-axis with one side always facing the Earth.82

83

Figure 1 - Thermal CAD model of the CubeSat.84

The thermo-physical properties can be seen in Table 1 and the optical85

properties in Table 2. It was considered that the external surfaces are cov-86

ered with Solar Cells and the internal surfaces painted with black paint. The87

dissipative components are composed of Silicon and covered with Graphite88

Epoxy.89

Table 1: Thermo-physical properties
Material Density Thermal Conductivity Specific Heat

(kg/m3) (W/m◦C) (J/kg◦C)

Aluminum Alloy 2710 168.0 963.0
Fiberglass (PCB) 2440 1.1 737.0

Silicon 2320 148.8 712.0

90

The thermal modeling is based on a nodal or lumped parameter method.91

In this method, the satellite is divided in a number of regions, assumed92

isothermal, which are called nodes. These nodes exchange heat among each93
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Table 2: Optical properties
Material Absorptivity (α) Emissivity (ε) α/ε

Fiberglass (PCB) 0.75 0.89 0.843
Graphite Epoxy 0.93 0.85 1.094

Black Paint 0.95 0.87 1.092
Solar Cells 0.90 0.80 1.125

other by conduction and radiation and with outer space by radiation. Also,94

they can receive heat loads from external sources or from electronic compo-95

nents. The temperature of each node is the result of these interactions.96

The thermal software package SINDA/FLUINT (SINDA), which is a tool97

for heat transfer design and fluid flow modeling of complex systems, was ap-98

plied to calculate the temperatures of the satellite in various scenarios. The99

first one is an operational scenario with all the components working nor-100

mally and space environment parameters at its maximum values (hot case).101

In the second one, the components are in standby and the space environment102

parameters at its minimum values (cold case). The other scenarios consist103

in variations of each parameter individually alternating from its maximum,104

minimum and medium values while maintaining all other variables in its105

maximum or minimum values. This approach was employed in order to the106

ANN learn the influence of each parameter in the thermal behavior of the107

CubeSat. We also simulated two additional arbitrary scenarios, A and B, to108

test the generalization capability of the ANN. The simulated scenarios can109

be seen in Table 3.110

First, the steady state was calculated and then the transient tempera-111

tures were stabilized for 10 orbits. Afterwards, the ANN was trained with112

two data sets. The first one consists of the last orbit from the scenarios 1 to113

14, and the second comprise the last 5 orbits from the scenarios 1 to 27. The114

thermal model contains a total of 21 nodes, but only the data of 9 nodes115

were used for training. These 9 nodes relate to the 6 external surfaces and116

the 3 internal components. The remaining nodes (PCB’s nodes) are impor-117

tant in the computation of the temperature distribution in the satellite, but118

they are not required in the OS, since the satellite telemetry usually does119

not contain such information.120

To perform training, it was utilized a classical Multilayer Perceptron121

ANN with supervised learning [17]. The structure of the network consists122

of 7 elements in the input layer; two hidden layers, with 30 to 50 neurons123

each; and 9 neurons in the output layer. The elements in the first layer124
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Table 3: Simulated scenarios
# Scenario Comp.1 Comp.2 Comp.3 Solar Albedo Earth

(W) (W) (W) (W/m2) (W/m2) (W/m2)

1 Hot 0.80 0.40 0.60 1418 595.56 233
2 Cold 0.20 0.10 0.15 1326 450.84 208
3 MaxCp1 0.80 0.10 0.15 1326 450.84 208
4 MaxCp2 0.20 0.40 0.15 1326 450.84 208
5 MaxCp3 0.20 0.10 0.60 1326 450.84 208
6 MaxSol 0.20 0.10 0.15 1418 450.84 208
7 MaxAlb 0.20 0.10 0.15 1326 595.56 208
8 MaxER 0.20 0.10 0.15 1326 450.84 233
9 MinCp1 0.20 0.40 0.60 1418 595.56 233
10 MinCp2 0.80 0.10 0.60 1418 595.56 233
11 MinCp3 0.80 0.40 0.15 1418 595.56 233
12 MinSol 0.80 0.40 0.60 1326 595.56 233
13 MinAlb 0.80 0.40 0.60 1418 450.84 233
14 MinER 0.80 0.40 0.60 1418 595.56 208
15 Medium 0.50 0.25 0.375 1372 523.20 220.5
16 MedCp1a 0.50 0.40 0.60 1418 595.56 233
17 MedCp1b 0.50 0.10 0.15 1326 450.84 208
18 MedCp2a 0.80 0.25 0.60 1418 595.56 233
19 MedCp2b 0.20 0.25 0.15 1326 450.84 208
20 MedCp3a 0.80 0.40 0.375 1418 595.56 233
21 MedCp3b 0.20 0.10 0.375 1326 450.84 208
22 MedSola 0.80 0.40 0.60 1372 595.56 233
23 MedSolb 0.20 0.10 0.15 1372 450.84 208
24 MedAlba 0.80 0.40 0.60 1418 523.20 233
25 MedAlbb 0.20 0.10 0.15 1326 523.20 208
26 MedERa 0.80 0.40 0.60 1418 595.56 220.5
27 MedERb 0.20 0.10 0.15 1326 450.84 220.5
28 A 0.63 0.12 0.48 1345 551.45 229
29 B 0.26 0.31 0.19 1398 503.28 214

refer to time, the power of the 3 components, Solar Radiation, Albedo, and125

Earth Radiation. The main parameters used for training were learning rate126

of 0.01; momentum constant of 0.5; error tolerance of 0.0001; and, in case of127

non-convergence, the execution was interrupted after 106 epochs (complete128

training iterations). After successful training, the ANN was used to build129

temperature curves, based on the knowledge acquired.130
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In addition to the data provided by the thermal analysis software, the131

same procedure could be applied using the data from the thermal tests or132

from the telemetry of the spacecraft after launch.133

134

3. Results and Discussion135

First, we show the results for the first data set (last orbit). Fig. 2136

contains the comparison between the temperature curves generated by the137

SINDA software (in red) and the ANN (in blue), for two components, in four138

different scenarios: Hot, Cold, A, and B. The curves are shown as continuous139

lines and one of the components was omitted for better visualization.140

141

Figure 2 - Comparison of ANN and SINDA curves for the first data set.142

For the Hot and Cold cases the curves generated by the ANN show143

good agreement with the ones produced with SINDA. As for the scenarios144

A and B, there is a gap between the data from the two sources. The output145

generated for the cases A and B denote the generalization capability of146

the ANN, since these scenarios were not used in the training process. The147

quantitative comparison is listed in Tab. 4. The error for the Hot and Cold148

cases is less than 1 ◦C. On the other hand, the max error for the cases A and149

B are respectively 3.04 ◦C and 1.79 ◦C. In thermal control of space systems150

engineering for generic components an error smaller than 5 ◦C is acceptable,151

so we consider this a very good result.152
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Table 4: ANN and SINDA comparison for the first data set
Scenario Mean Error Standard Deviation Max Error

(◦C) (◦C) (◦C)

Hot 0.11 0.08 0.70
Cold 0.11 0.07 0.59

A 1.07 0.29 3.04
B 0.52 0.21 1.79

The curves for the second data set (five orbits) are plotted in Fig. 3.153

154

Figure 3 - Comparison of ANN and SINDA curves for the second data set.155

This time, the figures contain the data of just one component for better156

visualization. Again, for the Hot and Cold scenarios the curves generated157

by the ANN present good agreement with the ones produced with SINDA.158

However, in the cases A and B the ANN result show a greater difference159

from the curves of SINDA. In our tests, we observed that if we varied the160

value of one or two input variables, while keeping the others in values used161

for training, the resulting curves presented the expected behavior, which162

are five regular oscillations. Otherwise, if we altered three or more variables163

simultaneously, the curves diverged from the expected behavior, as shown164

for the A and B scenarios in Fig. 3.165



doi:10.6062/jcis.2016.**.**.**** Reis Junior et al. 8

Table 5 contains the calculated error for the second data set. As for the166

first data set, the errors for the Hot and Cold scenarios are very low. For the167

A and B cases, the mean error is 3.59 ◦C and 5.59 ◦C, respectively. What168

considered alone would be acceptable. Nevertheless, the maximum error169

observed is greater than 20 ◦C for some specific points. This is more than170

the acceptable limit mentioned above and we could not find better results171

for the range of parameters tested.172

Table 5: ANN and SINDA comparison for the second data set
Scenario Mean Error Standard Deviation Max Error

(◦C) (◦C) (◦C)

Hot 0.16 0.12 1.16
Cold 0.15 0.13 1.06

A 3.59 3.14 20.90
B 5.59 4.47 21.76

One possible reason for the difference from the results of the two data173

sets is the greater number of information the ANN has to learn in the second174

one. Besides that, we consider that the results for the second data set are175

good results, because the mean error is not very high and the scenarios A and176

B are actually extreme cases where all the variables were modified from the177

trained values simultaneously. Additionally, for the Operational Simulator178

we will only need one orbit, due to the cyclic behavior of the temperatures179

for a given set of parameters as a function of the orbit period.180

181

4. Conclusion182

The results for the first data set, containing just one orbit, showed very183

low error in the data produced by the ANN, not only for the scenarios used184

for training but also for arbitrary ones. In this case, the ANN provided185

good generalization, i.e. generated reasonable outputs, for data not used in186

training.187

The results for the second data set (containing five orbits) also showed188

very low error for the curves produced by the ANN in comparison with the189

training set. On the other hand, the ANN had more difficulty in generalizing190

for arbitrary configurations of the input variables, especially when all the191

variables were modified at the same time.192

In summary, the MLP neural network is very efficient in learning from193

data and reproducing this data after training. However, the generalization194

ability of this type of ANN is very dependent on the parameters of the195
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network and on the complexity of the data set.196

Considering this fact, our current objective is to further analyze the197

influence of each parameter in the generalization capability of the ANN.198

Afterwards, we intend to increase the scale of the problem, including larger199

satellites, and apply more modern methods of ANNs such as Deep Learning200

[18].201

202
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