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Abstract. The representation of the potential energy surfaces of atom-molecule or molecular dimers interactions should account
faithfully for the symmetry properties of the systems, preserving at the same time a compact analytical form. To this aim, the choice
of a proper set of coordinates is a necessary precondition. Here we illustrate a description in terms of hyperspherical coordinates
and the expansion of the intermolecular interaction energy in terms of hypersherical harmonics, as a general method for building
potential energy surfaces suitable for molecular dynamics simulations of van der Waals aggregates. Examples for the prototypical
case diatomic-molecule–diatomic-molecule interactions are shown.
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INTRODUCTION

Spherical and hyperspherical harmonics expansions [1] have been successfully employed to represent potential energy
surfaces of a large series of van der Waals aggregates (e. g. floppy molecule-rare-gas-atom [2, 3, 4], H2O–H2 [5],
H2O–rare-gas-atom [6]), using information from molecular beam experiments and/or quantum chemical calculations.
The general method is based on the expansion of the interaction potential in terms of hyperspherical harmonics and
consists in fitting a certain number of points of the potential energy surface (PES), previously determined, selected on
the basis of geometrical and physical characteristics of the system. The resulting potential energy function is suitable
to serve as a PES for molecular dynamics simulations [7], because of its compact analytical form, allowing for fast
calculation of derivatives, and its full account of the symmetries of the system. Here we discuss the spherical and
hyperspherical representation of the PESs for the general diatom–diatom case [8], starting from the simple atom-
diatom case. We limit our consideration to non-reactive interactions, where the constraint on interatomic bonds and
bond angles kept “frozen” at their equilibrium positions is enforced, i. e. the interacting molecules are considered as
rigid. Exceptions are those of larger molecules, such as H2O2 [2], where the “floppy” torsional mode is active. The
more complex case of reactions, not explicitly treated here, implies the release of the internal constraints on bonds
and angles (see e.g. [9, 10] and a careful choice of the set of angular coordinates among the alternative variants of the
hyperspherical ones[11, 12, 13, 14], to get a convenient form of the kinetic energy and of the potential energy surface.
The internal dynamics of many-body systems, such as atomic and molecular clusters, is another interesting field of
application of this approach, where the adoption of the hyperspherical coordinates (here illustrated in their use for the
PESs) permits one to separate the different contributions to the kinetic energy, on the basis of an hyperspherical mode
analysis [15, 16, 17, 18, 19, 20, 21]. Variants of the hyperspherical expansion methods have also been applied to the
modeling of the intermolecular interactions of molecules relevant to atmospheric chemistry [22, 23, 24, 25, 26, 27].
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THEORETICAL BACKGROUND

The intermolecular interactions involving atoms or molecules can be represented as a sum of an isotropically aver-
aged contribution, as typically measurable from scattering of an atom with a hot (i.e. fast rotating) diatom, and an
anisotropic term. In the prototypical case of an atom interacting with a diatomic molecule considered as a rigid rotor,
the interaction depends on a distance R, usually the distance between the atom and the center-of-mass of the molecule
and an angle θ, defined by the direction of R and the molecular axis. The intermolecular potential V (R, θ), where
0 ≤ θ ≤ π admits an expansion in spherical harmonics, simply the Legendre polynomials Pμ(cos θ) (the orthonor-
mal expansion set with the required completeness properties for convergence for a function defined 0-π range), is
expressed as:

V (R, θ) =
∑
μ

Vμ (R) Pμ(cos θ)

where μ = 0, 2, · · · (the odd terms vanish by symmetry). The “minimal” expansion in this case is obtained by trun-
cation, V (R, θ) = V0 (R) + V2 (R) P2(cos θ), where P2(cos θ) = (3 cos2(θ) − 1)/2. Identifying V‖ = V (R, 0) and

V⊥ = V
(
R, π

2

)
, one has the relations

V0(R) =
1

3

(
V‖ + 2V⊥

)
; V2(R) =

3

2

(
V‖ − V⊥

)
(1)

or inversely V‖ = V0 + V2, and V⊥ = V0 − 1
2
V2.

The above outlined representation can be considered as a spherical-harmonics expansion, such as that of Refs. [1,
6, 5, 2]. This approach to the intermolecular interactions focuses on the isotropic V0 term, the leading one for weakly
bonded systems.

Leading Configurations
To define the leading configurations, let us consider the spherical-harmonics expansion of the intermolecular potential
energy surface of two diatomic molecules introduced for the O2–O2 system [28, 29]. For a given configuration of the
two molecules, treated as rigid rotors, at a certain value of the distance R of their centers of mass, the intermolecular
interaction energy V depends on a set of three angular coordinates, denoted as θa, θb, ranging from 0 to π, and φ,
ranging from 0 to 2π, as follows:

V (R, θa, θb, φ) = 4π
∑

La,Lb,L

VLa,Lb,L (R) YL0
La,Lb

(θa, θb, φ) (2)

where La, Lb = 0,1,2,· · · and | La − Lb |≤ L ≤ La + Lb and the angular functions YL0
La,Lb

functions are bipolar spherical
harmonics:

YL0
La,Lb

(θa, θb, φ) =
∑

m

(−)La−Lb

(
La Lb L
m −m 0

)
× ΥLa,m (θa, φa)ΥLb,−m (θb, φb) , (3)

where the functions ΥLa,m and ΥLb,−m are ordinary spherical-harmonics, the symbol between large parentheses is a
3− j symbol [30] and it holds the inequality -min(La, Lb) ≤ min(La, Lb). The radial coefficients VLa,Lb,L (R) are the
“momenta” of the expansion, representing the radial dependence of the different components of the interaction, i.e.
dispersion, induction and electron overlap plus electrostatic contributions. Figure 1 shows the set of leading configu-
rations appropriate for characterizing the interactions of pair of diatomic molecules, with the corresponding values of
the above mentioned angular coordinates. At any given configuration, the sperical-harmonics in Equation 2 assume
fixed values and the potential energy, depending on R, becomes a linear combination of the corresponding momenta
VLa,Lb,L (R). For a value Ri assigned to the distance R, the interaction energy can be estimated from ab initio calcula-
tions, for each of the leading configurations, and a set of values for cuts of the potential energy surface is obtained.
The obtained values and the corresponding sets of the VLa,Lb,L (R) radial momenta, form a system of linear equations,
to be solved analitically, expressing the radial momenta as a combination of spherical-harmonics. The isotropic radial
term, the V000(R) moment of the expansion, is interpreted in terms of the relative contribution of the size-repulsion,
induction and dispersion attraction terms, to the intermolecular interaction, plus possibly additional attractive effects
(as those due to charge-transfer components), which may not vanish when averaging over all mutual orientations.
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FIGURE 1. Sketch of the leading configurations adopted in Ref. [8] to characterize the intermolecular interactions of the H2–X2

and H2–HX systems, X = H, F, Cl. The corresponding values of the θa, θb and φ coordinates are indicated (see Ref. [8]).

Intermolecular interactions of pairs of diatomic molecules: the H2-X2 case for X = H, F, Cl

The knowledge of the intermolecular interaction between diatomic molecules is of practical and fundamental interest
for atmospheric chemistry. In order to provide an example of application of the hyperspherical expansion method to
the case of diatomic molecule–diatomic molecule interaction, we report here the isotropic radial term V000(R) of the
hyperspherical expansion of the intermolecular potential energy of the H2–H2, H2–F2 and H2–Cl2 pairs of molecules.
Figure 2 shows the V000(R) profiles for the three systems.
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FIGURE 2. Isotropic component V000(R) of the intermolecular interactions of H2–H2, H2–F2 and H2–Cl2 systems.
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