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Resumg: O Problema da Soma de Subconjuntos (8SP) pode ser posto como, “dados n-+1 inteiros
positives, Wy, Wy ..., W, W, € W, encontre um subconjunto dentre os w,’s tal que sua soma seja
exatamente igual a """, Apesar da simplicidade de sua formulagio, sabe-se que este problema ¢ NP-
dificil, e que ele pode ser resolvido de maneira razodvel quando os coeficientes sio “pequenos”, ou
entfio muito “grandes”. Todavia, quando o0s coeﬁéientes estdo entre estes dois extremos ndo ha algo-
ritmo algum conbecido na literatura. PropBe-se uma técnica de represenlagfio parcial dos
coeficientes do problema que fornece uma alternativa possivel para a resolugiio deste tipo de
probiemas,
Abstract: The Subset Sum Problem (SSP) can be posed as: “Given a set of n+1 positive integers,
Wy, Wy ...y W, W, and J¥ find a subset amidst the w,'s such that their sum is F¥"", Despite its simple
definition, this problem is a well known NP-Hard problem and when the coefficients are either
“small” or “large” there are algorithms which solve it with a reasonable computational effort.
However, no reference in the literature was found for problems where the coefficients are between
these two extremes. To deal with this type of problems a partial representation technique approach
is suggested.
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1. Introduction

The Subset Surn Problem (SSP) can be stated as “Find a Subset amidst » positive integers wy,...,wy,.
1, Wy such that the Sum of this Subset is another positive integer W™, It can also be posed as a Knap-

sack Problem, i.e. given a set of n items with weights w;’s and a Knapsack with capacity W, solve:

n
Maximize 2 = 3 wix;

Subject to : Ewm =W
i=i

xi=0o0rl, jef{l-m) )
1, if item is selected
where x; = or
0, otherwise

The Subset Sum Problem is a well known NP Hard member, ¢f Garey and Johnsen (1979)

and Martello and Toth (1990). There is, however, a strong relation between the maximum data size
and both the space requirements and running time, Le. if the coefficients are “small” then it can be
salved in pseudopolynomial time by Dynamic Programming (¢.f Faaland (1973), Ahrens and Finke
(1975)) or Hybrid Approaches (¢.f Martello and Toth (1984a), Yanasse and Soma (1987) and
Yanasse and Soma (1994)). Typically, “small” are coefficients up {0 Gaue = 9 digits {Where gun <
f.log w;i ] € Gusar, for all i = 1, ..., m), since in addition to pseudopolynomial time algorithmns, there
are some polynomial time approximation schemes for the SSP with very good performances indeed
¢.f. Martello and Toth (1984b), Martello and Toth (1990) and Soma, Yanasse, Zinober and Harley
(1993).
For “large” coefficients (gmin = Max ja1, .. 0 Liog w,J = 10 n) there is the Lagarias and Odlyzko (1983)
algorithm which s a direct application of the 13, ¢f. Lenstra, Lenstra and Lovész (1982) and Lovész
(1986). For the laiter case, it js important to note, that the algorithm is not an exact one, but it finds
a solution, if any, for almost all instances of SSP, provided that the coefficients ate Jarge positive
integer numbers.

The authors are unaware of other works and references in the literature dealing with the SSP
with intermediate size coefficients. This provides an indication, perhaps, that problems with these

coefficients sizes, L.e. that are neither too *'small” nor too “large™ are the hardest ones to solve.
b4
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We supgest a partial representation technique which may solve these intermediate size

coefficients. The main idea is to generate another SSP much easter than the original one, solve il
and whenever a solution to this surrogate problem is found, test it in the original problem to know
whether it is a solution or not. The surrogate §SP’s are generated by using a similar idea as of bit

string slicing. It the next section these ideas are further explored.

2. Mathematical Formulation

Let the constraint of {1) be decomposed into:

Zl‘;im =W - A (2_1)
Ywn= W +Ad @2)
i=1
where,
wi = (wi—wimod A).A™ (3.1
wi = wimod A 3.2)
W = (W—WmodA).A” gi;
W = Wmod A '
4 =0, n—l 3-3)

A is a positive integer number satisfying Max.j-; ..» {1, |_log ij-9] <log A S Maxg, ..» [I_log
w;l}, and wherefore, it is straightforward to show that x is a solution to (1) if and only if it is a
solution to (2.1) and (2.2), for some A, =0, ..., n-1.

We suggest the following approach to solve (1).

Algorithm Partial Representation
1. Solve (2.2) by Dynamic Programming; for A=0, .., n-1;
2. Whenever a solution is found for a given stage and some A in the
above interval, do a Backtrack to find x (solution of (2.2)) and test it in (1),
2.1 If x is a solution to (1) then Halt (Optimal Solution),
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2.2 Otherwise make a set all states of that given stage and A zs infeasibie,

{which is equivalent to a pruning in the incumbent tree) and go to step 1,
Le.continue with a new stage, or increase the value of A.
3. If all stages and A‘s have been considered and no solution was found,

then problem (1) is infeasible.

Remarks:

L. The range of A can assume in (2) (see (3.5)), probably can be tightened. Better estimates can be
obtained in polynomial time by using Dantzig’s greedy algorithm {or Martello and Toth quadratic
greedy search, cf. Martello and Toth (1990)). If the range of A is made tighter (in the better case
it will be 1) then the computational effort decreases sharply.

2. There exists a trade-qff between the value of A to be chosen and the number of solutions in (2.2),
ie. if A=l then the number of solutions in (2.2) will be almost surely exponential, but the space
requirement will be polynomial and if A = 10%2 Ueg%il ¢hen the reverse case oceurs, so it scems
reasnnabie that the better values of A cannot occur in the extremes of the interval,

3. The pruning in the incumbent tree is made before taking into account a new variable, since it will

diminish the number of “misleading” feasible solutions to be tested.

4. Depending upon the choice of A some of the w;’'s can be Zero, which seems to be an additjonal

difficulty. This case, however, can be handled easily by splitting the set of coefficients into two

subproblems, .. those with the w; = 0 as subproblem (I) and those with w; = 0 as subproblem (1.

Solve subproblem (I) with the algorithm ;;iven above and subproblem (I) by Dynamic

Programming and then do a merge between the solutions of the two subproblems.

3. Conclusions

Some limited computational tesis evaluating the performance of this proposed approach will
be presented.

The suggested method can be used as an alternative for solving “hard” Subset Sum
Problems, although the algorithm is pseudopolynomial in time, due to size of the coefficients for
practical purposes its worst running time case can be considered exponential.

Another point which seems to deserve some further study is the smedy of Aggregative
Methods (which was in vogue during the 70's, c.f. Salkin and Mathur (1989 )) in conjunction with
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the theory of cutting planes. It seems that the main reason for the wane of the former, came with the

sizes of the resulting coefficients.

Finally, it seems also interesting to try this approach in a distributed or parallel systems.
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