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Resumo: O Problema da Soma de Subconjuntos (SSP) pode ser posto como, "dados n+1 inteiros 

positivos, wh  wn.j, wn  e W, encontre um subconjunto dentre os w i's tal que sua soma seja 

exatamente igual a W". Apesar da simplicidade de sua formulação, sabe-se que este problema é NP-

dificil, e que ele pode ser resolvido de maneira razoável quando os coeficientes são "pequenos", ou 

então muito "grandes". Todavia, quando os coeficientes estão entre estes dois extremos não ha algo-

ritmo algum conhecido na literatura. Propõe-se uma técnica de representação parcial dos 

coeficientes do problema que fornece uma alternativa possível para a resolução deste tipo de 

problemas. 

Abskael: The Subset Sum Problem (SSP) can be posed as: "Given a set of n+1 positive integers, 

wh  w„ and Wfind a subset amidst the w,'s such that their sum is W". Despite its simple 

definition, this problem is a well lcnown NP-Hard problem and when the coefficients are either 

"small" or "large" there are algorithms which solve it with a reasonable computational effort. 

However, no reference in the literature was found for probleras where flue coefficients are between 

these two extremes. To deal with this type of problems a partia' representation technique approach 

is suggested. 

Kej~: Integer Programming, Dynamic Programming, Combinatorial Optimization 
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1. Introduction 

The Subset Sum Problem (SSP) can be stated as "Find a Subset amidst ri positive integers 

such that te Sura of this Subset is another positive integer W". It can also be posed as a Knap-

sack Problem, te. given a set of ri items with weights wi's and a Knapsack with capacity W. solve: 

Maximize z = WOO 
i 

SUNCet tO : 	E WiXi = W 
1.1 

= Oor 1, 	j E (1 ..• ri) 
	

(1) 
item j is selected 

wherexj = 	or 
0, otherwise 

The Subset Sum Problem is a well known NP Hard member, cf. Garey and Johnson (1979) 

and Martello and Toth (1990). There is, however, a strong relation between te maximum data size 

and both the space requirements and running time, Le. if lhe coefticients are "small" then it can be 

sol ved ia pseudopolynomial time by Dynamic Programming (cf. Faaland (1973), Mimas and Finke 

(1975)) or Hybrid Approaches (cf Martello and Toth (1984a), Yanasse and Soma (1987) and 

Yanasse and Soma (1994)). Typically, "small" are coefficients up to @kr  9 digits (where q„,h, 

bog wiJ for all i = 1, n), since ia addition to pseudopolynomial time algorithms, there 

are some polynontial time approximation schemes for lhe SSP with very good performances indeed 

c.f Mattello and Toth (1984b), Martello and Toth (1990) and Soma, Yanasse, Zinober and Harley 

(1995). 

For "large" coefficients 	 Llog 	/O n) there is te Lagarias and Odlyzko (1983) 

algorithm whicb is a direct application of the L 3 , cf. Lenstra, Lenstra and Lovász (1982) and Lovász 

(1986). For the latter case, it is important to note, that the algorithm is not an exact one, but it finds 

a solution, if any, for almost ali instances of SSP, provided that lhe coefficients are large positive 

integer numbers. 

The authors are unaware of other works and references in lhe literature dealing with the SSP 

with intermediate size coefficients. This provides ais indication, perhaps, that problems with tese 

coefficients sizes, te. that are neither too "small" nor too "Iarge" are the hardest ones to solve. 
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We suggest a partia] representation technique which may solve these intermediate size 

coefficients. The main idea is to generate another SSP much easier than the original one, solve it 

and whenever a solution to this surrogate problem is found, test it in the original problem to know 

whether it is a solution ar not. The surrogate SSP's are generated by using a similar idea as of bit 

string slicing. In lhe next section these ideas are further explored. 

Mathematical Formulation 

Let the constraint of (1) be decomposed into: 
- 

E Wai = W - 	 (2.1) 

E wixi = W + AÃ 
	 (2.2) 

1=1 

where, 

= (wi - wi mod (3.1) 
w, = wi mod A (3.2) 

W = (W-WmodA).A-' (3.3) 
(3.4) W = Wmod A 
(3.5) 

=0. • -, n -I 

A is a positive mteger number satisfying Max.j 1 	(1, Llog wii-9) log A 5 Max.i 	ILlog 

wif ), and wherefore, it is straightforward to show that .r is a solution to (1) (temi only jfit is a 

solution to (2.1) and (2.2), for some = 0, ..., n-1. 

We suggest the following approach to solve (1). 

Mgorithm Partia( Representation 

1. Solve (2.2) by Dynamic Programming; for À = O, ..., n-1; 

2. Whenever a solution is found for a given stage and some À in the 

above 	interval, do a Backtrack to find x (solution of (2.2)) and test it in (1), 

2.1 If x is a solution to (1) then Halt (Optimal Solution), 
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2.2 Otherwise make a set ali states of that given stage and X as infeasible, 

(which is equivalem to a pruning in the incumbent tree) and goto step 1. 

Lexontinue with a new stage, or increase the value of X. 

3.1f ali stages and X's have been considered and no solution was found, 

then problem (1) is infeasible. 

Remarks:  

I. The range of X can assume in (2) (see (3.5)), proballly can be tightened. Better estimates can be 

obtained ia polynomial time by using Dantzig's greedy algorithm (ar Martelo and Toth quadratic 

greedy search, cf. Martelo and Toth (1990)). 1f the range of X is made tighter (in lhe better case 

it will be I) then lhe computational effort decreases sharply. 

2. There exists a fiacre-off between lhe value of Ato be chosen and lhe number of solutions in (2.2), 

te. if A=1 then lhe number of solutions in (2.2) will be almost surely exponential, but lhe space 

requirement will be polynomial and if A = 10 - ak'g"i-11  then lhe reverse case occurs, so it seems 

reasonable that lhe better values of A cannot occur in the extremes of lhe interval. 

3. The pruning in the incumbent tree is made before taking jato account a new variable, since it will 

diminish lhe number of "misleading" feasible solutions to be testei 

4. Depending upon lhe choice of A some of lhe wi's can be zero, which seems to be an additional 

difficulty. This case, however, can be hancled easily by splitting lhe set of coefficients jato two 

subproblerns, te. those with lhe wi  = Das subproblem (1) and those with w;  # O as subproblem (I). 

Solve subproblem (II) with Lhe algorithm -given above and subproblem (1) by Dynamic 

Programming and then do a merge between Lhe solutions of lhe two subproblems. 

3. Conclusions 

Some limited computational testa evaluating the performance of this proposed approach will 

be presented. 

The suggested method can be used as an altemative for solving "Tuzrd" Subset Sum 

Problems, although lhe algorithm is pseudopolynomial in time, due to size of lhe coefficients for 

practical purposes its worst nmning time case can be considered exponential. 

Another point which seems to deserve some further study is lhe study of Aggregative 

Methods (which was in vogue during Lhe 70's, e.f. Salkin and Mathur (1989 )) in conjunction with 



1131 
Lhe theory of cutting planes. h seems that Lhe main reason for the wane of Lhe formar, carne with Lhe 

sizes of Lhe resulting coefticients. 

Finally, it seems also interesting to try this approach in a distributed or parallel systems. 
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