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ABSTRACT

A mamufacturing system consisting of two machines aperating in series and an in-process
inventory is considered. Products must be inspected afler being processed by the machines. After
inspection, praducts are either discarded, reworked, or are allowed to proceed to the next stage. The
machines are subject to failure during use. The time-to-failure, the processing time, and the repair
time of the machines, and the rework time of each product are considered to be exponentially
distributed. The in-process inventory is controlled by a policy that decides dynamically whether to
activate the first machine or not. The cost structure includes a processing cost, a repair cost, a
storage cost, a restart cost, a starving cost, a cost if a product is lost, and a reward for delivering the
final product. A Markov Decision Model is used to maximize the long-run average revenue per unit
time. The optimal policy is compared with the optimal (s, $) policy and with the uncoatrolied model.
Numerical resuits are presented.

RESUMO

Considera-se um sistema de manufatura com duas maquinas M; e M operando em série ¢
um estoque intermedidrio. Os produtos processados pelas maquinas passam por uma inspegdo, onde
podem ser aceitos, descartados ou enviados para reprocessamento. As maquinas estdo sujeitas a
falhas durante o uso. O tempo até a quebra, o tempo de reparo, o fempo de processamento das
mdquinas e 0 tempo para reprocessar cada produto sdo considerados exponencialmeote distribuidos.
O estoque intermediério ¢ controlado por uma politica que decide dinamicamente sobre o bloqueio
ou ndo da miquina M. A estrutura de custos indlui um custo de estocagem, um custo de reativagio
das maquinas, um custo de ociosidade da maquina Ma, um custo de processamento, um custo de
reparo, um custo por perder um produto e um ganha por produto fabricado. Utiliza-se um Modelo
Markaviano de Decisio para obter uma politica que maximiza a receita média do sistema a longo
prazo por unidade de tempo. A politica tima ¢ comparada com a politica (s, S) dtima e com a
situagio em que ndo se efetua nenhum controle sobre o modelo. Resultados numéricos sio
apresentados.
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1. Introduction

Consider a manufacturing system with two machines M, and M; continuously producing a
single product. Each product is processed first by machine M, and then by machine M. An in-
process inventory is used to reduce machine M idleness. The storage capacity N of the in-process
inventory is finite. After being processed by the machines, each product must be inspected. After
inspection, for each machine M; , i = 1, 2, a product either (&) is discarded if it presents major defects
(with probability p,), (b) is sent back to the machine for rework if it presents minor defects (with
probability p,)), ot (c) it proceeds to the next stage in case no defects are found (with probability p P
If the machine involved is M,, the next stage would be storing the product in the in-process
inventory or loading the product directly into the second machine M; (depending on the availability
of My). In case the machine involved is Mz, the next stage would be seading the finished product to
its final destination (see Figure 1).

Figure I - Overview of the system

As the machines may fail during use, the main objective is to derive an optimal control policy
of the in-process inventory. This control is achieved by blocking or unblocking machine M. The cost
structure includes 2 processing cost, a repait cost, a storage cost, @ machine restart cost, a starving
cost, a cost if 2 product is lost, and a reward for delivering the final product. A Continuous Time
Markov Decision Model is used to maximize the long-run average revenue per unit time. The control
policies considered to block or ueblock machine M; take into account not only the size of the in-
process inventory but also the observed state for each machine (blocked, starved, processing,
broken, reworking a produet, or broken during rework). This paper extends some ideas of [Hwang
and Koh, 1992] and [Gopalan and Kannan, 1994], using the mathematical approach presented in
[Carvalho et alii, 1993].

[Hwang and Koh, 1992] formulated a Markovian mode! to obtain an (s, S) policy that
minimizes the average cost of in-process invenitory between two machines without considering
rework or inspection. [Carvalho et alii, 1993) extended these results, considering control policies
that take into account not only the size of the in-process inventory but also the state of each machine
(blocked, starved, processing, or broken). This idea yielded a minimum average cost that is less than
the one obtained in [Hwang and Koh, 1992]. [Gopalan and Kannan, 1994} discussed a similar model
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inchiding inspection and rework. [Carvalho et alii, 1995] introduced an in-process inventory in
Gopalan and Kannan's model and used @ Markov Decision Model to cobtain the optimal control
policy.

The present paper compares the optimal policy obtained by [Carvalho et alii, 1995] with the
opfimal (s, 8} policy which only considers the size of the in-process inventory and not the machines’
states in the decision process, and with the same model with no control over it. The objective is to

find the gain in using the optimal policy instead of simpler policies.

2. Model description

The set of possible states for each machine M; and M; is Eu = {W, P, R, B, BR}, where P
denotes “processing a product”, R denotes “reworking a product”, B denotes “broken”, and BR
denotes “broken duting rework™. For machine M; the state W denotes “waiting to be unblocked”
and for machine M the state W denotes “waiting while the in-process inventory is empty”.

The decision to block or unblock machine M, takes into account the state of the system. The
state space of the system is defined as E = {(m, n, my) / i, € Exy, n € {0, 1,..., N}, m; € Epp},
where m; is the state of machine M, i =1, 2, and n is the dize of the in-process inventory (including
the product that eventually is being processed on machine Ms).

The dynamic behavior of the system is described by the change of its states. Each time the
system changes its state, the new state configuratioo must be observed in order to decide what action
is to be taken, i.e. whether the machine M; is to be blocked or not. M; must be unblocked whenever
M; is in the W state (n = 0), and must be blocked whenever the in-process inventory is at its
maximum capacity (n = N). Therefore, for each state i = (m;, n, ms) & E, the space of possible

actions is:
oy ifn=0
A@y=¢{D,B} if0<n<N
{By ifn=N

where D and B denote respectively unblock and block M;.

For each machine M, i = 1, 2, the processing time of each product, the time-to-failure, the
repair time, the rework time, the time-to-failure during rework, and the repair time for failures during
rework are independent, exponentially distributed random variables with rates B;, &;, Wi, Bas, A, and
L, Tespectively.

Products must be inspected after being processed by the machines. After inspection, products
are either discarded with probability p., reworked with probability ps, or are allowed to proceed to
the next stage with probability pg, fori=1, 2.
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In order to obtain a control policy that maximizes the long-run average revenue per unit time,
this system is modeled as a Continuous Time Markov Decision Process. Given that at a decision
epoch the system is in state i € E and action 2 € A(j) is chosen, 1(i,2) is the expected time until the
next decision epoch, p(ij,a) the probability that in the next decision epoch the state will be j € E, and
R(i,a) the expected revenue obtained until the next decision epoch.

A;j(a) is defined as the transition rate from state ¢; to state ¢ (e;, ¢ & E) when the {ast chosen
action was a & A(i). The algorithm used to obtain transition rates Aj(a) that describes the system
behavior can be found in [Carvalho et alii, 1995]. Using the transition rates Ay(a), it is easy to obtain
the total rate of output from each state given by Aia) = 2. A;(a), and so the transition probabilities
are given by p(ij.a) = AgaVAfa), and the expected time between transitions is given by
1(i,) = 1/Ai(2). The expected revenue is given by:

R(i,a) = G(i,a) - Culi.a) - Cpi(i.2) - Cra(i,a) - Cun(i2) - Cii,2) - Cuafla) - Cralia) -

Cu(ia) - Cifi,8) - C.(i,a),

where G(i,a), Cui,a), Cilia), Culi,8), Calia), Cu(i,a), C(i,a) represent respectively the expected
reward for delivering the final product, the ¢xpecied storage cost, the expected processing cost for
machine M;, the expected repair cost for machine M,, the expected restart cost for machine M, the
expected cost of losing 2 product in machine M;, i = 1, 2, and the expected starving cost for machine
M,, incurred until the next decision epoch, given that at the decision epoch the system is in State i €
E and action 2 € A(J) is chosen. The expression for these costs can be found in [Carvalho et alii,
1995].

With the values of (i), p(ij,a), and R(i:a), the Value-Tteration Algorithm [Tijms, 1986] was

used to obtain the policy that maximizes the Jong-run average revenue per umit time.

3. Numerical Results

As an illustration, consider the input data shown in Table 1. Besides these values, the
following data have been considered:

Storage cost: ¢, = 5§

Sale price of a product: g =50
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Machine My | Machine Mo

Processing rate 8 5
Breakdown rate 0.5 1
Repair rate 2 1
Product rework rate 12 10
Breakdown-during-rework rate 0.5 1
Repair-of-breakdown-during-rework rate 2 1
Restart ¢cost 10 10
Processing cost 50 50
Repair cost 50 50
Starving cost - 20
Inspection: Cost of losing a product 50 70
Inspection: Probability of losing a product 0.05 0.05
Inspection: Rework probability 0,05 0.05
Inspection: Probability of no defect 09 0.9

Table I - Input data
Figure 2 shows the veriation of the minimum average revenue in terms of the maximum size
of the inventory (N). As can be seen, the size of the inventory up to a certain maximum Limit is very
important to improve the average revenue. In this example, it is not worth using an inventory size
larger than 6.

Maximum Skze of tve tnventory (N}

Figure 2 - Average revenue in terms of maximum size of the inventory
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Based on the input valses shown in Table 1 and an inventory size of 6, the following

comparisons can be made:

average revenue using the optimal policy: 9.033

average revenue using the optimal (s, S) palicy:  8.247 (8.7 % less than the optimal policy)
average revenue using no control: -2.621 (129% less than the optimal policy)
4, Conclusions

The models discussed in [Hwang and Koh, 1992] and [Gopalan and Kannan, 1994] have
been extended using a Markov Decision approach. The present paper considered inspection, rework
and in-process inventory. This paper shows that comtrolling the in-process inventory is essential
whenever failures of manufacturing machines, in a transfer line system, must be considered.

The model discussed has been implemented in C+. A first prototype of a class structure
constructed to deal with Markov and Semi-Markov Decision Processes has been used.
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