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ABSTRACT  

A subgradient method is applied to approximate a 
solution for the multidimensional 0-1 knapsack problem (MKP). At 
each iteration a Lagrangean problem with a cut constraint for the 
objective function of (MKP) is solved. 

In computational tests with problems taken from 
the literature, this algorithm provided bounds that were very close 
to the optimal solution (less than 1% error), a performance that 
is comparable with the best known algorithms. Tests nade with 
random generated pioblems also presented excellent results. 

RESUMO 

Aplica-se um método de subgradientes para aproximar 	a 
solução do problema multidimensional da mochila 0-1 (PMM). A 	cada 
iteração resolve-se um problema Lagrangeano com restrição de corte 
na função.objetivo do problema (PMM). 

Em testes computacionais com problemas de literatura, o 
algoritmo apresentou licitantes muito prOximos do valor O-timo do 
(PM (menos de 1% de erro), uma performance comparével aosmelhores 
algoritmos conhecidos. Testes realizados com problemas gerados alea 
toriamente também apresentarem resultados excelentes. 

*This paper hos been accepted for presentation at the 11 th  Triennial 
Conference on Operations Research, 10-14 August, 1987, 
Buenos Aires, Argentina. 
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1. INTRODUCTION  

The multidimensional knapsack problem can be stated 

as 

subj. to 	Ax5b 

xe{0:1} n , 

for ceN„ beNi , and AeRr n . 

As problem (P) is NP-hard [M. Garey; D. Johnson; 

1979] it is ver>' unlikely the existence of "good" algorithms 

for its solution. So, many heuristical methods had been proposed 

to approximate the value v in (P), like those in [A. Previne; 

G. Plateau, 1986], [M.J. Magazine; O. Oguz; 1984], [E. Balas; C.M. 

. Martin, 1980], [R. Loulou; E. Michaelides, 1979], [G.A. 

Kochenberger; B.A. McKarl; F.B. Wyman, 1974]; [F.S. Hillier, 19691 

and [S. Senju; Y. Toyoda, 19681. 

In this paper we propose a new subgradient algorithm 

to approximate the value v in (P), using as a sudproblem at each 

iteration the following Lagrangean problem, with a cut constraint 

for the objective function of (P) 

max (cx-A (k)  (Ax-b)) 

(LP) 	
subj. to 	cx51 (1) -1 

x6(0,1/ 11 , 

x (k) to,  
where k mçans the algorithm iteration, 	

1(k) = cx(k-1)  

kk1 and I ( ' )  is any upper bound on v. 

Next we present the algorithm and some computational 

results. 
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2. THE NETHOD 

The algorithm can be stated as follows: 

Algorithm 

Initialization: given (0) , x (a)-, 

set i = O, 
CONT=0, 

= (m..n)/2, 

k = 1. 

• Step 1: Solve the (LP) problem obtaining x (k) . 

Step 2: If x (k)  is feasible for problem (P) then 

If ci kcx (k)  then x (k) . 
CONT = CONT+1, 

1 (k)  . 

Bise i =x (k) , 

I (k)  

CONT = CONT+1; 

Bise set , (k+1) = max 1 
(k) 

(Ax (k) _ t)i -1 

(L.1).b. 1 

 

for i=1, 	m, 

(1(41) 	(k = I 	-1; 

Step 3: If CONT2I0 stop with the feasible solution 

Bise, set k = 1;41 and return to step 1. 
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Comments: I (0) is an upper bound on v, forexample, the value of 

the objective function in the linear programming relaxation of 

(P). The values of (G) used in computational tests were the 

m-vectors (0.1, 0.1, ..., 0.1) T , (0.2, 0.2, ..., 0.2) T nd 

(0.5, 0.5, ..., 0.5) T .3 is an intermediate feasible solution 

(note that 1=0 is feasible for (P)) and CONT is the number of 
feasible solutions found (some of them may be repeated). 

Nence the algorithm acts as follows: for any 

iteration k (step 1) we solve (LP) obtaining x (k) . Tf x (k)  is 

feasible for (P), we update the intermediate feasible solution 

otherwise the variable A (k)  is updated(step 2).The process 
can be repeated (depending on CONT) with the current X (k)  and the 

(°) i initial I 	n an attempt to find a better feasible solution, 
(k) — cx 	>cx (steps 2 and 3). 

• The success of this algorithm depends on finding a 
"good" feasible solution to (P) as th'e result of its application. 

The subgradient part of the algorithm plays an important role in 

this context. 

Next we prove that the algorithm always finds a 

feasible solution to (P). 

Proposition: The algorithm always finds a feasible solution to 

(P). 

Proof: At any iteration k in step 1 results x (k) , and cx (k) s 

- 1, i.e., this cut removes te x (k-1)  solution 
and other solutions, feasibles or not. Therefore, as the 

process is finite, in the worst case, x (k) =0 is found in 

step 2 (a feasible solution to (P) as we know). mm 

Next; we'll see 'how the algorithm finds a "good" 

feasible solution to (P). 
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At any iteration k, for 1=1, 	m  we have 

(Ax (k-I) -b) i  1 
(X+1).b i 	  j. 

(Ax (k-2) -b) a  - , (k-2) - 	  O x i  (1+1).b 

(k) X. 	= max 

(k-1) à. 	= max 

 

(°) (Ax 	-11) i 	- 
O x5°) 

z 	(t+I).b a  (1) 
À. 	= MaX 
1 

  

and then, 

x. 	 X (j) 	1 	 
[(Ax 	-b) (k) = max 	0  z 	(x+1).b. 

(Ax (k-1)  

Where j is such that X i (1)  5  0 f'or 1=j+1 	k:1. 

The constant ((e+1).b ir l  realizes only the scaling 

of the sum ia brackets, ia order to avoid jumpsin Xr )  changes. 

0 ) ( Then, for example, if X a  = 0.1, the sum ia brackets multiplied 

by the constant will beofacentesimal order. 
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The subgradients (Ax (5) -b) 1 , Osjsk-1, are 

non-positive when the i-th constraint of (P) is feasible, and 

positive otherwise. Then, if the i-th constraint is feasible for 

(k) 	 . 	
(k) each x (3) , Osjsk-1, probably A i  ->0 (remember that af A i  á0, 

then we set AS k) = O). This may happen even with some positive 
subgradients In the interval Osjsk-1. 

(k) In the same way A. 	may be greater than AP ) , 

obviously with the contribution lof many positive subgradlents 

OsjSk-1. 

Therefore, ia general 4 k), i-1 	 will be 

always non-negative and remains of the sane order of x (. 9) , 	a. 

Now, consider the objective function of problem 

(LI'): 

y c: x. - 	7 xçk) 	( 	7 a. x. - b.). 
3= j.1 	3 	3 	i=1 	1 	' 	13 	3 	1  

We note that: 

k) ( 
(a) If A. =0, lsism, the i-th constraint of (P) doesn't make any 

influence in the objective function of (LP), and according to 

the previous observations, fite i-th constraint was feasible 

for some solutions x (3) , Osjsk-1; 

(k) (b) If A i  >O, the i-th constraint of (P) contributes to the 

objective function of (LP). As (LI') is a maximization problem, 

fite feasibility of the i-th constraint is desirable, i.e., 

I a i . x. - b.s0. Several solutions of (P) are eliminated by 
j 	 1  =1 	3 	3   

fite cut cxSI 0') -1, and possibly 	some feasible solutions 

among them. 
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(c) Hence there exists a compromise solution'to (LP), that 

results in the maximization of y c. x i  subject to the cut 
1  

exsI (k) -1 and a search for the feasibility of (P). 

A solution with í a.. x. - b. «O imply that only 

asfew x.'s will be 1 Cone), and this makes opposition to the 3  

maximization of y c. x.. Hence, a minimal complementary 
j;/. 	I 	I. 

slackness soiution is seeked, and becauseof the formulation of 

prOblem (P), this search might provide a "good" feasible solution for (P). 

3. COMPUTATIONAL RESULTS 

The algorithm was coded in FORTRAN IV and a lot of 

computational tests vete carried out on a Burroughs 8-6800 
Computer. For the solution of the (PL) problem, we use the very 

efficient algorithm of D. Fayard and G. Plateau [D. Fayard; 
G. Plateau, 1982]. 

Table 1 presents the results obtained by our 
algorithm and ten algorithms of the literature. The problems 

tested are of Petersen [C.C. Petersen, 1967], Weingartner[H.M. 
Weingartner;D.N. Ness, 1967] and Senju 8 Toyoda [S. Senju; 

Y. Toyoda, 1968]; and are of size (mxn) 5x39, 5x50, 2x28, 2x105, 
30x60, 30x60, respectively. Numbers in brackets are the 

percentages of the optimal value founded by the corresponding 

algorithm. The results of Magazine's algorithm were obtained from 
his work [M. Magazine; O. Oguz, 1984] and the other results appear 

in A. Freville and G. Plateau IA. Freville; G. Plateau, 1986]. 

Ngte that our algorithm had a performance that is 

comparable with the best known algorithms. 

Our algorithm was also tested in some randomly 

generated problema as showed ia table 2. These problems were 

obtained as follows: the A and c coefficients were randomly 

generated ia the intentai [0,100], and b coefficients obtained 
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adding the corresponding A rows coefficients and multiplying the 

result by y=0.1 or y=0.5 . (as in Lorena e Clivo [L.A.N. Lorena; 

A.A. de Clivo, 1980]). This tests also presented excellents 
results, comparing with a branch-and-bound algorithm (MPS Tempo 

of Burroughs). 

4. CONCLUSION 

Although we didn't present a formal prof that our 

algorithm finds a "good" feasible solution to (P), the 
computational results showed it's very satisfactory performance. 

The algorithm can be extended to other zero-one optimization 

problems. 

Note that the method presented may indicate that 
one solves at each iteration, the"duarproblem 

	

(DP) min 	max 1cx-X(Ax-b) 

	

no 	xe10,11 1  

Subj.  . to 	ex5I (k) -1 

This is not true, because the I (k)  bounds are updated together 

with a (k) . Bente, at eact iteration, the Lagranghan problem is 

modified in its cut constraint. 

The subgradient algorithm used is also different of 
the traditional ones [M. Fisher, 19811, duo mainly to the Xis 

updating and the stopping rule. 

As a final comment we observe that ali these 
algorithms (of Table 1) may have a poor performance when the c j 's 

are very small in . (P). This is so because a small difference 
relative 'to the optimal value implies ia a high percentual error, 

for the optimal value is low. 



39 

5. REFERENCES 

BALAS, E.; MARTIN, C.M. "Pivot and complement - a heuristic for 
0-1 programming". Management Science Research, 26(1):86-96, 

1980. 

FAYARD, D.; PLATEAU, G. "An algorithm for the solution of the 
0-1 knapsack problem". Computing, 28:269-287, 1982. 

FISHER, M. "The Lagrangian Relaxation method for solving 

Integer Programming Problems". Management Science, 17:581-615, 

1981. 

FREVILLE, A.; PLATEAU, G. "Heuristics and reduction methods for 
multiple constraints 0-1 linear programming problems". 
EuroPean Journal of Operational•Research, 24:206-215, 1986. 

GAREY, M.; JOHNSON,.D. "Computers and Intractability: a guide 
to the theory of NP-completeness, Freeman, San Francisco, 

• 1979. 

GUIGNARD, M. "Methods heuristics de rãsolution d'un système 
d'inégalitis linãaires en variables entièrespu bivalentes". 

Report 32, Laboratoire de Calcu de Lille, January 1972. 

HILLIER, F.S. "Efficient teuristic procedures for integer linear 
programming with an interior path". Operations Research, 17: 

600-636, 1969. 

KOCHENBERGER, G.A.; Mc KARL, B.A.; WYMAN, F.P. "A heuristic for 
general integer programming". Decision Sciences, 5(1):36-44, 

1974. 

LORENA, L.A.N.; OLIVO, A.A. "Uso de uma função penalidade 	exata 

para eliminação do 'gap' de dualidade em problemas de programa 

ção linear inteira teto-um". Presented in III CLAIO 

(Congreso Latino-Iberoamericano de Investigacion Operativa e 

Ingenieria de Sistemas). Santiago, Chile, agosto 1986. 

LOULOU, R.; MICHAELIDES, E. "New greedy-like heuristics for the . 

multidimensional 0-1 knapsack problem". Operations Research, 

27(6):1101-1114, 1979. 



40 

MAGAZINE, M.J..; OGU2, O. "A heuristic algorithm for the 

multidimensional zero-one knapsack problem". European 
Journal of Operational Research, 16:319-326 (1984) • 

PETERSEN, C.C. "Computational experience with variants of the 

Balas algorithm applied to the selection of R and D projects". 
Management Science, 13(91:736-750, 1967. 

SENJU, S.; TOYODA, Y. "An approach to linear programming with 0-1 
variables". Management Science, 15(4):196-207, 1968. 

TOYODA, Y. "A simplified algerithm for obtaining approximate 
solutions to 0-1 programming problems". Management Science, 

21(12):1417-1427, 1975. 

WEINGARTNER, H.M.; NESS, D.N. "Methods for fite solution of the 
multidimensional 0-1 knapsack problem". Operations Research, 
15(1):83-103, 1967. 


