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Phase synchronization may emerge from mutually interacting non-linear oscillators, even under

weak coupling, when phase differences are bounded, while amplitudes remain uncorrelated.

However, the detection of this phenomenon can be a challenging problem to tackle. In this work,

we apply the Discrete Complex Wavelet Approach (DCWA) for phase assignment, considering

signals from coupled chaotic systems and experimental data. The DCWA is based on the

Dual-Tree Complex Wavelet Transform (DT–CWT), which is a discrete transformation. Due to its

multi-scale properties in the context of phase characterization, it is possible to obtain very good

results from scalar time series, even with non-phase-coherent chaotic systems without state space

reconstruction or pre-processing. The method correctly predicts the phase synchronization for a

chemical experiment with three locally coupled, non-phase-coherent chaotic processes. The impact

of different time-scales is demonstrated on the synchronization process that outlines the advantages

of DCWA for analysis of experimental data. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4999908]

Several types of synchronization have been described

theoretically and observed experimentally. Among them,

the most prominent are complete synchronization, lag

synchronization, and generalized synchronization.1 Our

focus in this article is the detection of phase synchroniza-

tion between two systems, where a certain relation

between phases appears, while their amplitudes can

remain without significant correlation.2–6 We are particu-

larly interested here in situations in which we have a sca-

lar data set to analyse, which is often the case with

experimental measurements.

I. INTRODUCTION

The phenomenon of synchronization has been exten-

sively reported in natural systems, such as in heart cells,

applause, flashing of the South-East Asian fireflies, and

chirping of crickets.7–11 Historically, synchronization is

understood as a mutual rhythm adjustment of periodic oscil-

lators, due to some type of interaction between them.1

Considerable progress has been made towards precisely gen-

eralizing the concept of synchronization, allowing the con-

cept to encompass chaotic oscillators.1,3–6,12–16 Several types

of synchronization have been described theoretically and

observed experimentally. Among them, the most prominent

are complete synchronization, lag synchronization, and gen-

eralized synchronization.1

Our focus in this article is the detection of phase syn-

chronization between two systems, where a certain relation

between phases appears, while their amplitudes can remain

without significant correlation.2–6 We are particularly inter-

ested here in situations in which we have a scalar data set to

analyse, which is often the case with experimental measure-

ments. Therefore, investigating phase synchronization

requires a well-defined phase assignment out of the scalar

data series, in order to test the condition D/ðtÞ ¼ j/2ðtÞ
�/1ðtÞj < cons tan t, where /1ðtÞ and /2ðtÞ are the phases of

two systems. To assign such phase variables using a scalar

data series, many methods require, directly or indirectly, state

space reconstruction. After that, one can use direct measure-

ments of the phase angle on a projection of the attractor, as

well as more sophisticated techniques such as: measurement

on a proper Poincar�e surface of section, curvature and recur-

rence plots,17,18 or localized sets.19 The methods that can be

applied straightforwardly to scalar data series include phase

estimation by means of frequency method,20,21 synchros-

queezed wavelet transforms,22 protophases,23 Hilbert trans-

form,3,24 and the continuous complex wavelet transform.25–35

The methods lead to consistent results when the underly-

ing system is a phase coherent one, i.e., it is possible to find

an appropriate projection so that the system trajectory circles

around a rotation center. However, this is not the case for

non-phase coherent systems,1 which generate broad-band

spectrum signals. For these systems, with certain limitations,

scalar data series can be used to obtain the phase with the

Hilbert transform3,24 by searching for a unique center of
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rotation of the trajectories in the signal vs Hilbert transform

state space. Nevertheless, there are cases for which the

Hilbert transform is not able to keep track of fast transitory

phase changes of the system,20,21 leading to artifacts. To

address this drawback, a methodology based on a continuous

complex wavelet transform that uses the complex Morlet

wavelet to obtain the phase of scalar chaotic time series was

introduced.30,36 In fact, this method is considered as one of

the most effective approaches for reconstruction of the phase

of the signal.37,38

The methodology, however, has a high computational

cost and may present some difficulties to analyse the results

due to its redundancy framework when applied to large time

series. Additionally, the method involves selection of

method parameters that are sometime difficult to obtain.37,38

To overcome these difficulties, we proposed an approach,

namely, Discrete Complex Wavelet Approach (DCWA)39 for

phase assignment. This approach is based on the Dual-Tree

Complex Wavelet Transform (DT–CWT) and was introduced

for phase assignment to non-linear oscillators. The applicabil-

ity of our DCWA has been verified in chaotic R€ossler systems

in phase-coherent and non-phase-coherent regimes,40,41 chaotic

Lorenz systems,42,43 and Kuramoto Model with different

settings.44

In this paper, we show that, through application to the

synchronization in a complex chaotic chemical process,

DCWA is a very efficient method for phase synchronization

detection. We demonstrate how to detect phase synchroniza-

tion among three locally coupled chaotic electrochemical

oscillators for which the determination of phase synchroniza-

tion phenomenon presents considerable intrinsic difficulties.

We explore the implementation through a computationally

efficient means that allows an accurate characterization of

the phase synchronization phenomena. The remainder of this

paper is organized as follows. In Sec. II, we present the

DCWA, the arctangent method, and Hilbert Transform.

Then, in Sec. III, the results and analysis of the chaotic sys-

tems and experimental data are presented, and in Sec. IV, we

provide the conclusion.

II. METHODS

In this section, we describe how to calculate the phase

using DCWA. (Further details are given in a previous publi-

cation.39) For comparison, we also describe the arctangent

method (Subsection II B) and Hilbert Transform (Subsection

II C).

A. Discrete complex wavelet approach (DCWA):
Energy and phase computation

In order to calculate the phase of a chaotic system using

the DCWA, the time series of a scalar variable x of the sys-

tem is analyzed by the multi-scale Dual-Tree Complex

Wavelet Transform (DT–CWT), according to the scheme in

Fig. 1(a). For details on the DT–CWT, see Appendix A and

Ref. 45. As the output of this transformation, we have the

time series of the complex wavelet coefficients dj at each

scale j. With these coefficients, the energy Ej at each scale j
is calculated as the square of the modulus of complex wave-

let coefficients, i.e., EjðnÞ ¼ jdjðnÞj2. After that, the global
wavelet spectrum is computed as follows:

Ej ¼
X

n

EjðnÞ: (1)

In the next step, we take the scale J in which the global

wavelet spectrum energy is the maximal, i.e., EJ ¼ maxj Ej.

The maximum energy considering all the scales obtained by

the global wavelet spectrum are the natural candidates to be

used for calculating the phase. Among them, in general, we

discard scales which have an insufficient number of points to

represent the phase time series correctly. This is due to the

fact that as the scales have an insufficient number of points,

they cannot identify the localized structures in the case of

the discrete wavelet. Finally, the selected scale J is used to

extract the phase time series /JðtÞ ¼ a tan 2ðdJ; �d
JÞ. The

atan2 is the arctangent function with two arguments: dj is the

imaginary part of the complex wavelet coefficient in the

scale J and �d
J

is the real part of the complex wavelet coeffi-

cient in the scale J.

Consider now two systems with time series x1 and x2.

The method described above applied to both of them can

be viewed in Fig. 1(b). When J1 was different from J2, we

chose the scale J ¼ minðJ1; J2Þ. This choice was based on

the fact that the number of points N in this multi-scale

phase time series is proportional to the scale, i.e.,

N ¼ 2L¼J; therefore, we chose the larger phase time series.

Subsequently, the phase time series of each system, /J
1 and

/J
2, are straightforwardly calculated. The instantaneous

FIG. 1. Schematic representation the

DCWA. In inset (a), a single time

series x is considered. Inset (b) illus-

trates the application of the DCWA in

two series, x1 and x2.

083122-2 Ferreira et al. Chaos 27, 083122 (2017)



phase difference between the systems is computed as

D/J
12 ¼ j/J

2 � /J
1j, which allows one to check for the phase

synchronization condition D/J
12 ¼ j/J

2 � /J
1j < constant.

The DCWA method is schematically represented in Fig. 1.

B. Arctangent method

The Arctangent method is the most common method for

measuring phase when it is possible to project the underlying

attractor on a plane so that the projection is a smeared limit

cycle12 with well-defined rotation center.

In this and other similar cases, the phase /ðtÞ presents a

coherent phase and it can be measured as the angle in the

polar coordinate system on the plane (x, y), as proposed by

Rosenblum et al. in Ref. 3, as follows:

/ tð Þ ¼ tan�1 y

x

� �
: (2)

When the system displays a non-coherent oscillation, the

phase can be defined by using the projection of the attractor

on the plane of the derivative, as proposed in Ref. 46 by

using the equation

/ tð Þ ¼ tan�1 _y

_x

� �
: (3)

Note that to calculate the phase by using these methods,

it is necessary to know the two state variables, namely, x and

y, which is not always available.

In this approach, the arctangent function is defined as a

four-quadrant operation.

C. Hilbert transform

A consistent way to define the phase for an arbitrary sig-

nal is known in signal processing as the analytic signal con-

cept, as can be seen in Ref. 1. This general approach, based

on the Hilbert transform (HT), unambiguously gives the

instantaneous phase /ðtÞ and amplitude A(t) for a signal s(t)
via construction of the analytic signal fðtÞ, which is a com-

plex function of time defined as (Ref. 1)

fðtÞ ¼ sðtÞ þ ı sHðtÞ ¼ AðtÞ eı/ðtÞ: (4)

Here, the function sHðtÞ is the HT of s(t)

sH tð Þ ¼ p�1 P:V:

ð1
�1

s sð Þ
t� s

ds; (5)

where P.V. means that the integral is taken in the sense of

the Cauchy principal value.

In Sec. III, we describe the chaotic systems and experi-

mental data, as well as the results obtained from the applica-

bility the DCWA.

III. RESULTS

In this section, we present the phase synchronization

analysis of the simulated data from R€ossler systems and then

of experimental data.

A. Simulated data

To demonstrate the definition of phase, we first consider

uncoupled R€ossler systems, both in phase-coherent and non-

phase-coherent regimes. Then, we analyze the effects of cou-

pling on systems in both regimes. The time series is obtained

from two non-identical R€ossler systems,47 using a Runge-

Kutta 4th order method with an integration time step of 0.01.

In order to verify the applicability of the DCWA in time

series with large numbers of points, N ¼ 223 number of

points are also used. For each R€ossler system, we study the

use of x and y time series to test the method for the choice of

observable variables. The DCWA is applied considering

j¼ 17 scales of decomposition. From this decomposition

scale, it is possible to obtain the reconstruction of wavelet

and avoid edge effects.

1. Uncoupled R€ossler system

The uncoupled R€ossler system used in the tests is

described by

_x ¼ �y� z;

_y ¼ xþ ay;

_z ¼ 0:4þ zðx� 8:5Þ; (6)

where the parameter a sets the attractor dynamics to be in

phase-coherent or non-phase-coherent regime.

Figure 2(a) shows the projection of the attractor of the

R€ossler system in phase-coherent regime with a¼ 0.16. The

non-phase-coherent R€ossler attractor with a¼ 0.2925 is

shown in Fig. 2(b). The corresponding global wavelet spec-

trum obtained using the x and y variables (denoted by Ex and

Ey, respectively) are depicted in Figs. 2(c) and 2(d), consid-

ering phase-coherent and non-phase-coherent regimes,

respectively. Note from the global wavelet spectrum that the

maximum energy scale for both cases, x or y variables, is

J¼ 9. Therefore, this scale was applied to obtain the phase in

both cases. The phase obtained using the x and y variables in

the scale J¼ 9 is denoted by /J¼9
x and /J¼9

y , respectively.

Note that the phases grow practically uniform as expected

for a phase-coherent regime, which can be seen in Fig. 2(e).

The small deviations can occur due to the different periods of

the unstable periodic orbits that the trajectory intermittently

approaches. For the system in the non-phase-coherent regime,

these deviations are larger, as expected [see Fig. 2(f)].

2. R€ossler system in phase-coherent regime

Let us consider now two R€ossler systems, in a phase-

coherent regime coupled bidirectionally by variable y,

described by the following equations:

_x1;2 ¼ �x1;2 y1;2 � z1;2;

_y1;2 ¼ x1;2 x1;2 þ 0:16 y1;2 þ g ðy2;1 � y1;2Þ
_z1;2 ¼ 0:4þ z1;2 ðx1;2 � 8:5Þ; (7)

in which x1 ¼ 0:98 and x2 ¼ 1:02 define the mismatch in

the natural frequencies and parameter g is the intensity of

coupling between these two systems.

083122-3 Ferreira et al. Chaos 27, 083122 (2017)



In this application, three different intensities of coupling

were considered: very weak, medium, and strong. The cou-

pling strengths were empirically adjusted to obtain three pos-

sible states for the analysis of the systems: not phase

synchronized, phase-slips, and in-phase synchronization.

For different coupling intensities g, we compared the

DCWA with the arctangent method.

According to the analysis, we observe from the global

wavelet spectrum that the maximum energy scale for both

cases, by using x or y variables, is J¼ 9. Thus, the phase was

calculated considering this scale.

The phase difference between these systems is shown in

Fig. 3; in (a) using the DCWA and in (b) comparing the

DCWA and the arctangent method considering g ¼ 0:035.

In Fig. 3(a), jD/J¼9
x j denotes the phase difference calcu-

lated with DCWA considering the scale J¼ 9 and using the x

variable. In Fig. 3(b), D/DCWA
x and D/DCWA

y denote the phase

difference calculated by applying the DCWA, considering

the scale J¼ 9 and using the x and y variables, respectively.

The outcome of the arctangent method is denoted by

D/arctangent.

For the three intensities of coupling studied, the DCWA

presents similar results to the arctangent method. For small

intensity of coupling g ¼ 0:01, the phase difference increases

with time, which characterizes the absence of phase synchro-

nization. If the coupling strength is increased to g ¼ 0:035,

some phase-slips appear. Note in Fig. 3(b) that phase-slips

are detected for both methods. In Fig. 3(c), the interval

t ¼ ½1300; 1400� of the original time series is shown to illus-

trate the phase-slips. When g ¼ 0:05, phase synchronization

sets in.

3. R€ossler system in non-phase-coherent regime

We include here the results related to two R€ossler sys-

tems in a non-phase-coherent regime, coupled bidirectionally

through variable x. The system is given by Eq. (8) and the

parameters considered are based on the studies in Refs. 1

and 21

FIG. 2. (a) and (b), The projection of

the attractor of the R€ossler system con-

sidering a phase-coherent regime,

a¼ 0.16 and a non-phase-coherent

regime, a¼ 0.2925, respectively. The

global wavelet spectrum in (c) phase-

coherent and (d) non-phase-coherent

regimes. The phase in (e) phase-

coherent and (f) non-phase-coherent

regimes.
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_x1;2 ¼ �x1;2 y1;2 � z1;2 þ g ðx2;1 � x1;2Þ;
_y1;2 ¼ x1;2 x1;2 þ 0:2925 y1;2;

_z1;2 ¼ 0:4þ z1;2 ðx1;2 � 8:5Þ; (8)

where x1 ¼ 0:98 and x2 ¼ 1:02.

In this application, two different intensities of coupling

were considered: very weak and strong. According to the analy-

sis, we observe from the global wavelet spectrum that the maxi-

mum energy scale for both cases, by using x or y variables, is

J¼ 9 and the phase was calculated considering this scale.

The phase difference between the two systems using the

DCWA is shown in Figs. 4(a) and 4(b), denoted by jD/J¼9
x j

and jD/J¼9
y j, using the x and y variables of the time series,

respectively. Note in Fig. 4 that for small coupling intensity

g ¼ 0:05, the phase difference increases with time, charac-

teristic of systems that are not phase-synchronized. When

g ¼ 0:2, phase synchronization occurs.

4. R€ossler systems with noise

The robustness of the DCWA is investigated with the

addition of Gaussian noises to the x1; x2; y1; y2 components

of the two R€ossler system in non-phase-coherent regime

(a¼ 0.2925), according to the following equations:

_x1;2 ¼ �x1;2y1;2 � z1;2;

_y1;2 ¼ x1;2x1;2 þ ay1;2 þ gðy2;1 � y1;2Þ;
_z1;2 ¼ 0:4þ z1;2ðx1;2 � 8:5Þ; (9)

where x1 ¼ 0:98 and x2 ¼ 1:02.

The coupling intensity g ¼ 0:30 is considered in order to

analyze the phase synchronization between the two systems.

The noise is added to the temporal series, for example,

x1, as follows:

rx1 ¼ a � stdðx1ÞÞ � ðrandnðlengthðx1Þ; 1ÞÞ

in which a is the percentage of noise added the time series;

stdðx1Þ is the standard deviation of the elements of x1; randn
creates a matrix with underlying class of double, with Normally

distributed random numbers in all elements. After generated, the

noise is added to the respective temporal series in question.

In the DCWA, in all cases, the maximum energy scale is

J¼ 9. Therefore, the phase is calculated considering this

FIG. 3. Phase differences between two

R€ossler systems coupled bidirection-

ally by variable y considering phase-

coherent regime and applying in (a)

the DCWA and (b) the DCWA com-

pared with the arctangent method, con-

sidering g ¼ 0:035. (c) The interval

t ¼ ½1300; 1400� of the original time

series where phase-slips occur.

FIG. 4. Phase differences between two

R€ossler systems coupled bidirection-

ally by variable x considering non-

phase-coherent regime and applying

the DCWA using in (a) the x variable

of the time series and (b) the y variable

of the time series.
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scale. Figure 5 shows the phase difference between two cou-

pled chaotic R€ossler systems in non-phase-coherent, consid-

ering 0%, 30%, 60% and 90% noise.

The results indicate the robustness of the DCWA con-

sidering low levels of noise. When we consider the R€ossler

system in non-phase-coherent regime, the DCWA allows to

identify that, with 0% and 30% noise, correctly, the two sys-

tems are synchronized in phase (see Fig. 5). We emphasize

that the method is able to work properly with experimental

even in the presence of middle level of noise.

B. Experimental data

In this section, we apply DCWA for characterization of

the phase dynamics of electrochemical oscillations that take

place in a system of three locally coupled electrodes, as can

be seen in Ref. 48.

The experimental setup consists of three nickel wires

applied as the working, and a Pt wire as the counter electrode

in an electrochemical cell. A potentiostat sets a constant

potential that drives the reaction such that the potential dif-

ference constant between the wires and a Hg/Hg2SO4/satu-

rated K2SO4 reference electrode. The current, proportional to

the rate of metal dissolution on each wire, is measured; this

data will be used for time series analysis. A schematic of the

experimental setup is shown in Fig. 6(a).

Two identical coupling resistances R were introduced

between the Ni electrodes to induce local interactions

between electrodes x, y, and z as shown in Fig. 6(a); the

schematic of locally coupled configuration is shown in Fig.

6(b). Further details about the experiments are given in a pre-

vious publication.48

We analysed two data sets, composed of N¼ 200 and

500 points and classified as set I: having three weakly cou-

pled oscillators and set II: having three strongly coupled

oscillators. The same data set was analysed previously in

Ref. 49; because reconstruction of phase variables of the

non-phase-coherent chaotic signal was problematic, in the

previous work, a recurrence-plot based method was applied

to identify the network topology of the system. Here, we

focus on applying DCWA to characterize the phase dynam-

ics of the system.

Figures 6(c) and (d) show a time window for the data

series of the oscillators x, y, and z of the set I and set II,
respectively. The results obtained from the DCWA are com-

pared with the application of Hilbert transform; see

Subsection II C for details in the Hilbert transform. The

phase differences calculated via Hilbert transform consider-

ing the oscillators x and y are denoted by D/Hilbert
xy ; between

FIG. 5. Phase differences between two coupled R€ossler systems in non-

phase-coherent regime with g ¼ 0:30 and considering 0%, 30%, 60%, and

90% of noise.

FIG. 6. Experimental setup, for details,

see Ref. 48. (a) Diagram of the electro-

chemical cell; (b) topology of the cou-

pling of the three oscillators; (c) an

interval of time series of oscillators x,

y, and z of the set I;and (d) an interval

of time series of oscillators x, y, and z
of the set II.

083122-6 Ferreira et al. Chaos 27, 083122 (2017)



oscillators x and z are D/Hilbert
xz and between oscillators y and

z are D/Hilbert
yz .

Figure 7 illustrates the results obtained from the analysis

of the set I showing (a) global wavelet spectrum and (b)–(d)

the phase difference in the time interval t ¼ ½0; 100s� consid-

ering (b) DCWA with the scale J¼ 6; (c) DCWA with the

scale J¼ 7; and (d) the Hilbert transform.

We can observe in Fig. 7(a) that for the three oscillators

the scale of the maximum energy is J¼ 7. For comparison,

in addition to the phase corresponding to J¼ 7 [Fig. 7(b)],

we also calculated the phase corresponding to J¼ 6 [Fig.

7(c)]. This latter phase describes the behavior at faster time-

scales. While scale J¼ 8 also has comparable energies to

scales J¼ 6 and 7, the phase of this slow scale was not con-

sidered because of the insufficient number of points to well

represent the phase of the time series. In addition, this scale

would represent the behavior of slow drift in the time series

due to small changes in surface conditions during the chemi-

cal reactions. According to the phase differences illustrated

in Figs. 7(b) and 7(c), we can confer that the phase differ-

ences between the oscillators diverge in a complex manner,

i.e., the system is not phase synchronized. The Hilbert trans-

form based phase differences are also not bounded; however,

note that the phase differences in Fig. 7(d) reach very large

values (e.g., 1200 rad); this value is not consistent with the

slightly dissimilar nature of the oscillators and due to the

lack of center of rotation in the two-dimensional projection

with the Hilbert transform.

Figure 8 illustrates the results obtained from the analysis

of the set II showing the (a) global wavelet spectrum and

(b)–(d) the phase difference in the time interval t ¼ ½0; 100s�
considering (b) DCWA by using the scale J¼ 6; (c) DCWA

by using the scale J¼ 7; and (d) the Hilbert transform.

We can observe in Fig. 8(a) that for the three oscillators

the scale of the maximum energy is again for the scale J¼ 7.

(Similarly, for the weak coupling case, we also show results

for the fast J¼ 6 scale.) Based on the phase difference J¼ 6

[Fig. 8(b)], the three oscillators are almost perfectly phase

locked. For scale J¼ 7 [Fig. 8(c)], there are some variations

of the phase difference over time; however, we see that for

the time series data of about 500 cycles, the overall phase

differences are less than 4p radians, indicating the presence

of bounded phase difference and strong phase synchroniza-

tion. We also see that due to the non-phase-coherent charac-

ter, even for this relatively strong coupling, the oscillations

do not simply phase-lock, but instead there is a complex

phase-difference dynamics with bounded phase difference.

With respect to the results obtained using the Hilbert trans-

form, as can be seen in Fig. 8(d), the phase difference exhib-

its diverging trend, again because of the lack of center of

rotation in the 2D projection, making it impossible to prop-

erly infer that the oscillators are synchronized in phase.

The impact of slow J¼ 7 and fast J¼ 6 scales on the

dynamics can be also seen in the variation of energy of the

corresponding scales shown in Fig. 9. The energy of the

slow scale J¼ 7 variation exhibits sporadic spikes compared

FIG. 7. The results obtained from the

analysis of the set I showing in (a)

global wavelet spectrum and (b)–(d)

the phase difference in the time inter-

val t ¼ ½0; 100s� considering (b) the

DCWA by using the scale J¼ 6; (c)

the DCWA by using the scale J¼ 7;

and (d) the Hilbert transform.
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FIG. 8. The results obtained from the

analysis of the set II showing in (a)

global wavelet spectrum and (b)–(d)

the phase difference in the time inter-

val t ¼ ½0; 100s� considering (b) the

DCWA by using the scale J¼ 6; (c)

the DCWA by using the scale J¼ 7;

and (d) the Hilbert transform.

FIG. 9. The results obtained from the

analysis of the set II showing the

energy time series in the time interval

t ¼ ½0; 10s�, in the scale J¼ 6 and

J¼ 7 for the three oscillators, consider-

ing oscillators x (a), y (b), and z (c).
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with the relatively constant energy of the fast scale J¼ 6.

While for most time intervals, J¼ 6 scale dominates the sys-

tem, intermittently, when the corresponding energy is large,

J¼ 7 scales should be considered as well. We note that such

time-scale separation did not impact the final conclusion

about phase synchronization in the given system, but it is

certainly possible that careful choice of the scale must be

made in systems with largely varying time-scales.

The lack of phase synchronization for set I and the pres-

ence of phase synchronization in set II are consistent with

the previous result obtained with the recurrence plot

method.49 We note that with DCWA, the result was obtained

without state space reconstruction in a computationally

effective method using discrete wavelets.

IV. CONCLUSION

In this paper, we evaluated the applicability of the Discrete

Complex Wavelet Approach—DCWA for phase assignment to

chaotic systems and experimental data. The performance of the

DCWA in comparison with other known methods was verified

based on the results obtained to detect phase synchronization

between two coupled R€ossler systems in both phase-coherent

and non-phase-coherent regimes. The DCWA correctly detects

phase synchronization in two coupled chaotic R€ossler systems

in both phase-coherent and non-phase-coherent regimes.

Regarding the results from the analysis of electrochemical

oscillators, DCWA was able to correctly verify the phase syn-

chronization of the oscillations; the presence of non-phase

coherence was effectively handled by the algorithm by time-

scale separation of the different processes. In particular,

DCWA requires only a scalar time series of the system without

the need of reconstruction of the attractor, a very convenient

feature, especially in the case of experimental data.
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APPENDIX A: DUAL-TREE COMPLEX WAVELET
TRANSFORM

The DT–CWT is a well crafted transform, from a mathe-

matical and filter bank theory point of view, introduced by

Kingsbury in the late 1990s, as can be seen in Refs. 45 and

50–53.

In practice, DT–CWT employs two real Discrete

Wavelet Transform (DWT); for more details about the

DWT, see in Refs. 54 and 55. A schematic representation of

the DT–CWT decomposition is illustrated in Fig. 10. Herein,

the notation overline and underline are used to identify the

upper and lower decomposition tree filters, functions, and

coefficients, while the boldface is used to identify the com-

plex functions and coefficients. The real time series x is

decomposed in scales j ¼ 1;…; Jmax, and the notation ? is

included in the first scale filters, h?0 and h?1. The first DWT is

associated with a filter bank of the upper tree, and it uses

low-pass filters �h0 and high-pass filters �h1. It computes the

multilevel real wavelet coefficients �d
j

that will be used as

the real part of the desired complex wavelet coefficients dj.

The second DWT is associated with a filter bank of the lower

tree, and it is composed of low-pass filters h0 and high-pass

filters h1. Similarly, it computes dj, which contributes to the

pure imaginary part of dj. Therefore, if we consider Jmax¼ 3,

the desired output of this DT–CWT is

�d
1
; �d

2
; �d

3
; d1; d2; d3

h i
¼ <fd1g;<fd2g;<fd3g;=fd1g;=fd2g;=fd3g
� �

:

The usual output is also the complex scale coefficients

cJmax , which are not used in this method. In each scale decom-

position j, the number of points on the time series is reduced

by a factor of 2.

Therefore, the magnitude and the phase of the complex

wavelet coefficients dj for each scale j are given by

jdjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j< djð Þj2 þ j= djð Þj2

q
; /dj ¼ /j ¼ arctan

= djð Þ
< djð Þ

 !
:

The wðtÞ is close to the Hilbert pair of �wðtÞ. In other

words, wðtÞ � Hf�wðtÞg, where H denotes the Hilbert

transform.51–53

In Ref. 45, it is shown that the implementation of the

DT–CWT requires the first scale of the dual-tree filter bank

to be different from the succeeding scales. In this work, we

chose the Q-Shift (14, 14) tap-filters where scales j > 1,

which has provided a group delay of either 1/4 or 3/4 of a

sample period and also satisfy the usual 2-band filterbank

constraints of no aliasing and perfect reconstruction.56 For

the first scale, (13, 19) tap-filters were used, which are bi-

orthogonal and near symmetric. The values for these filters

are presented in Appendix B.

FIG. 10. Schematic multi-scale representation of three scales DT–CWT

decomposition of the real time series x in three levels, where the filters h?0
and h?1 are considered in the level j¼ 1. In levels j¼ 2 and j¼ 3, the filters of

the upper and lower tree are �h0; �h1 and h0; h1, respectively.
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In the following, we describe and discuss how to com-

pute the associated energy levels and, after that, the phase of

a chaotic system using our DCWA method.

APPENDIX B: DUAL-TREE FILTERS

The dual-tree filters have the following desirable proper-

ties: approximate half-sample delay property, perfect recon-

struction, finite support, vanishing moments, and linear phase

filters, as can be seen in Ref. 45. The two low-pass filters

should satisfy a very simple property: one of them should be

approximately a half-sample shift of the other, h0ðnÞ
� �h0ðn� 0:5Þ, because wðtÞ � Hf�wðtÞg.53 Furthermore, in

Ref. 45, three methods for dual-tree filter design are

described, which are linear-phase biorthogonal solution, Q-

Shift solution, and common-factor solution.45

The implementation of the DT–CWT requires that the

first scale of the dual-tree filter bank be different from the suc-

ceeding scales, as shown in Ref. 45. If the same filters are

used for each scale, then the first several scales of the filter

bank will not be approximately analytic, i.e., it is locally given

by a convergent power series. For the first scale, the condition

h0ðnÞ � �h0ðn� 1Þ must be satisfied exactly by using the

same set of filters in each of the two trees, being necessary

only to translate one set of filters by one sample with respect

to the other set in Ref. 45. Moreover, any set of perfect recon-

struction filters can be used for the first scale. Table I presents

the analysis filters coefficients used in this work.
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“Aplicaç~ao da transformada wavelet complexa dual-tree na detecç~ao de
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