
RDebug: A New Debugging Technique for Distributed R-Trees

Sávio S. T. de Oliveira2, Jose F. de S. Filho1, Vagner J. do Sacramento Rodrigues2,
Marcelo de C. Cardoso2, Sérgio T. de Carvalho1

1Instituto de Informática – Universidade Federal de Goiás (UFG)
Alameda Palmeiras, Quadra D, Câmpus Samambaia

131 - CEP 74001-970 – Goiânia – GO – Brazil

2GoGeo
Rua Leopoldo Bulhões, esquina com a Rua 1014
Quadra 31, Lote 07, Sala 9 Setor Pedro Ludovico

CEP 74820-270 – Goiânia – GO – Brazil

savio.teles@gogeo.io, jkairos@gmail.com, vagner@gogeo.io,

marcelo.cardoso@gogeo.io, sergio@inf.ufg.br

Abstract. The high data availability and the increasing number of GIS users
have motivated the emergence of distributed algorithms to process spatial oper-
ations efficiently. They are based on distributed indexes for an high performance
processing. Researches and ongoing work use R-trees as a distributed spatial
structure for indexing and retrieval of geo objects. However, these indexes have
shown a challenge, that is, how to debug an index which is based on an R-
Tree? In the past few years researches have been published on both distributed
algorithms and distributed processing. Though none of them has proposed a
debugging technique to a distributed R-Tree index. This paper presents a new
algorithm for debugging a distributed index based on R-Tree which is called
RDebug. This algorithm was used on DistGeo, a platform to process distributed
spatial operations. A graphic tool, named RDebug Visualizer, was developed to
show the output of the RDebug algorithm.

1. Introduction

The increasing of large spatial datasets demands high performance engine in order to pro-
cess complex spatial models. The best cost-benefit to provide innovative GIS applications
taking advantage of all available data is through distributed and parallel GIS processing.
But develop high performance engine to distributed spatial computing is very complex
and challenging.

In order to handle spatial data efficiently, a database system needs an index mech-
anism that will help it retrieve data items quickly according to their spatial locations. The
R-Tree typically is the preferred method for indexing spatial data. Many researches such
as [An et al. 1999, de Oliveira et al. 2011, Zhong et al. 2012], show that a distributed in-
dex structure can provide an efficient mechanism of spatial operations processing.

However, distributed R-Trees indexes for Big Spatial Data are very complex to be
developed and so it demands novel approaches to debug and check stability and this is the
main issue investigated in this work.



Debugging is an essential step in the development process, though often neglected
in the development of distributed applications due to the fact that distributed systems
complicate the already difficult task of debugging [WH Cheung 1990]. In recent years,
researches have developed some helpful debugging techniques for distributed environ-
ment. Nevertheless, we have not found in the literature any work that have addressed the
problem of debugging a distributed R-Tree.

In this paper, we propose a new debugging algorithm for distributed R-Tree build-
ing. The debugging algorithm, called RDebug, uses the distributed index structure to
aggregate debugging information. RDebug is used on DistGeo, a shared-nothing plat-
form for distributed spatial algorithms processing. We have also created a graphical tool
to visualize the debugging information and the R-Tree index structure, called RDebug
Visualizer.

The main contributions of this paper are as follows:

• RDebug - A debugging technique for distributed R-Tree building.
• DistGeo - A peer-to-peer platform, with no single point of failure, to process dis-

tributed spatial algorithms of an R-Tree.
• RDebug Visualizer - A graphical tool to visualize debugging information and the

distributed R-Tree index.

The rest of the paper is structured as follows. In Section 2, we briefly give an
overview of the use of debugging techniques for distributed environments and the view of
the distributed spatial algorithms. Section 3 describes the distributed processing of spatial
algorithms, Section 4 presents our approach for distributed R-Tree debugging. Section 5
presents the evaluation of RDebug algorithm in the DistGeo platform. Finally, we close
the paper with some concluding remarks in Section 6.

2. Related work
Researches on distributed spatial data either show techniques to debug distributed ap-
plications in general or techniques for R-tree distributed processing, but none addressed
both issues. The Section 2.1 shows the distributed debugging researches and 2.2 describes
researches of platforms for processing distributed spatial algorithms.

2.1. Distributed Debugging Techniques

In [G. et al. 2011] the author breaks down debuggers in two main families: log-based
debuggers (also known as post-mortem debuggers) and breakpoint-based debuggers (also
known as online debuggers). Log-based debuggers insert log statements in the code to
be able to generate a trace log during its execution. Breakpoint-based debuggers, on the
other hand, execute the program in the debug mode that allows programs to pause/resume
the execution at certain points, inspect the state and the perform step-by-step execution.

Several breakpoint-based debuggers have been designed for parallel pro-
grams using message passing communication including p2d2 [Hood 1996], TotalView
[Gottbrath 2009], and Amoeba [Elshoff 1989]. These debuggers offer the traditional com-
mands to stop, inspect and execute step-by-step a running program. Some of them allow
to set breakpoints on statements of one process (e.g. [Gottbrath 2009]) or a set of pro-
cesses (e.g. [Hood 1996], [Elshoff 1989]).



A great body of concurrent and parallel debugging techniques are event-based.
Event-based debuggers [C. E. Mcdowell 1989] conceive the execution of a program as
a sequence of events. The debugger records the history of the events generated by the
application, which can then be used to either browse the events once the application is
finished [Fonseca et al. 2007, Stanley et al. 2009], or to replay the execution to recreate
the conditions under which the bug was observed.

[WH Cheung 1990] describes a process for distributed debugging in general and
does not focus on a specific debugger or a particular technique, the paper focus is on
defining a step-by-step approach to tackle distributed debugging independent of the envi-
ronment.

2.2. Distributed Spatial Algorithms
This Section describes briefly the researches which present the use of parallelism in order
to improve the response time of the spatial algorithms. M-RTree [Koudas et al. 1996]
was the first published paper, which shows a shared-nothing architecture, with a master
and several workstations connected to a LAN network. The master machine can be a
bottleneck because it handles and client requests and moreover merges the answers of
the slaves and send to client machines. A similar technique was found on MC-RTree
[Schnitzer and Leutenegger 1999] and [An et al. 1999], which show the same problems
on master machine.

Hadoop-GIS [Kerr 2009] shows a scalable and high performance spatial data
warehousing system for running large scale spatial queries on Hadoop. However, it
does not use index to process the spatial operations. [de Oliveira et al. 2011] presents
a platform to process distributed spatial operations. Although, the solution proposed in
[de Oliveira et al. 2011] implements a distributed index, it is not scalable, since every
message go through the replicated master node. [de Oliveira et al. 2013] shows a hybrid
peer-to-peer platform, which comprehends a set of machines for naming resolution that
could be a bottleneck in the system.

[Xie et al. 2008] introduces a two-phase load-balancing scheme for the parallel
GIS operations in distributed environment. [Zhang et al. 2009] describes MapReduce and
shows how spatial queries can be naturally expressed in this model. However, it is only
indicated for non-indexed datasets.

A number of techniques and platforms have been proposed for handling spatial
big data. Nevertheless, none of the researches propose a technique for distributed spatial
index debugging of an R-Tree. Besides, none of them propose a platform using a peer-to-
peer approach for processing distributed spatial algorithms as found on DistGeo platform
(Section 3.1).

3. Distributed Processing of Spatial Algorithms
A number of structures have been proposed for handling multi-dimensional spatial data,
such as: KD-Tree [Bentley 1975], Hilbert R-Tree [Kamel and Faloutsos 1994] and R-
Tree [Guttman 1984]. The R-Tree has been widely used to index the datasets on GIS
databases and it has been used as an index data structure in this work.

An R-Tree is a height-balanced tree similar to a B-Tree [Comer 1979] with index
records in its leaf nodes containing pointers to data objects. The key idea of the data



structure is to group nearby objects and represent them with their minimum bounding
rectangle (MBR) in the next higher level of the tree.

Figure 1 illustrates the hierarchical structure of an R-Tree with a root node, inter-
nal nodes (N1...2 ⊂ N3...6) and leaves (N3...6 ⊂ a...h). Every internal node contains a
set of rectangles and pointers to the corresponding child node and every leaf node contains
the rectangles of spatial objects.

The Figure 1(b) shows MBRs grouping spatial objects of a...h in sets by their co-
location. The Figure 1(a) illustrates the R-Tree representation. Each node stores at most
M and at least m ≤ M/2 entries [Guttman 1984]. Our work uses the formula for M
value calculation presented in [de Oliveira et al. 2011].

(a) R-Tree index (b) Geographic space

Figure 1. R-Tree Structure

The Window Query is one of major query algorithms in R-Tree. The search starts
from the root node of the tree and the input is a search rectangle (Query box). For each
rectangle in a node, it has to be decided whether it overlaps the search rectangle or not. If
so, the corresponding child node has to be searched too.

Searching is done recursively until all overlapping nodes have been traversed.
When a leaf node is reached, the contained bounding boxes (rectangles) are tested against
the search rectangle and the objects that intersects with the search rectangle are returned.

In Figure 1, the search starts on root node, where the window intersects with nodes
N1 and N2. Then, the algorithm analyses node N1, which only N4 intersects with the
window. Analysing node N4, the algorithm returns the spatial object namely ′b′, that is
the single object that intersects the window.

In node N2, we do not have any entry intersecting with the window due to the
dead space. In other words, the window intersects with a space, which does not contain
any data. The dead space should be minimized to improve the query performance, since
decisions which paths have to be traversed can be taken on higher levels.

The overlapping area between rectangles should be minimized as well, as it de-
grades the performance of R-Tree [Beckmann et al. 1990]. Less overlapping reduces the
amount of sub-trees accessed during r-tree traversal. The area between c and d in Figure
1 is an example of overlapping.

3.1. DistGeo: A Platform of Distributed Spatial Operations for Geoprocessing

DistGeo is a platform to process spatial operations in a cluster of computers (Figure 2). It
is based on a shared-nothing architecture, which the nodes do not share CPU, hard disk
and memory and the communication relies on message exchange. Figure 2(a) depicts



DistGeo platform based on peer-to-peer model presented as a ring topology. It is divided
in ranges of keys, which are managed for each server of the cluster. In order to a server
join the ring it must be assigned a range first.

The range of keys are known by each server in the cluster using a Distributed
Hash Table (DHT) to store the mapping of the keys to servers. For instance, in a ring
representation, whose key set start with 0 to 100, if we have 4 nodes in the cluster, the
division could be done as shown below: a) 0-25, b) 25-50, c) 50-75 e d) 75-100. If we
want to search for one object with key 34, we certainly should look on the server 2.

(a) DistGeo Architecture (b) R-Tree Partitioning in DistGeo

Figure 2. DistGeo Platform

Every replica of an object is equally important, in other words, there is not a master
replica. Read and write operations may be performed in any server of the cluster. When a
request is made to a cluster’s server, it becomes the coordinator of the operation requested
by the client. The coordinator works as a proxy between the client and the cluster servers.

DistGeo uses the Gossip protocol [Demers et al. 1987], which every cluster server
exchanges information among themselves for everyone knows the status of each server.
In the Gossip protocol every second a message is exchanged among three servers in the
cluster, consequently every cluster’s server have knowledge of each other.

Figure 2(b) illustrates the structure of a Distributed R-Tree in a cluster. The parti-
tioning it is performed grouping the servers in cluster and creating the indexes according
to the R-Tree structure. The lines in Figure 2(b) show the need for message exchange to
reach the sub-trees during the algorithm processing.

Insertions and searching in a distributed R-Tree are similar to the non-distributed
version, except for: i) The need of message exchange to access the distributed partitions
and ii) Concurrency control and consistency due to the parallel processing in the cluster.
Both were implemented on DistGeo platform.

The distributed index has been built according to the taxonomy defined in
[An et al. 1999], as follows: i) Allocation Unit: block - A partition is created for every
R-Tree node; ii) Allocation Frequency: overflow - In the insert process, new partitions are
created when a node in the tree needs to split; iii) Distribution Policy: balanced - To keep
the tree balanced the partitions are distributed among the cluster servers.

Reliability and fault-tolerance were implemented on DistGeo storing the R-Tree
nodes in multiple servers in the cluster. The DistGeo uses Apache Cassandra [Cassandra ]



database to store the distributed R-Tree index nodes on cluster servers. Each R-Tree node
N receives a key, which is used to store the node in a server S responsible for ring range,
replicating the node N to the next two servers in S (clockwise). If a message is sent to N,
is selected one of the servers that store a replica of N. The query requests are always sent
to one of the cluster’s server that stores the root node of the R-tree.

As discussed on Section 3, reducing the overlapping and dead area on R-Tree
minimizes the number of R-Tree nodes accessed during the tree traversal on search algo-
rithms. The growth of the number of nodes accessed increase the network traffic because
the R-Tree nodes are stored in several servers on cluster, as shown in Figure 2(b). This
work implements a new algorithm that collects debugging information about a distribute
R-Tree and can helps to reduce the overlapping and dead area. We cover this algorithm in
more details in Section 4.

4. A Technique for Debugging A Distributed R-Tree
Guarantee that a distributed spatial index has being built accordingly is a non-trivial task.
In a distributed environment, it is hard to find bugs on insertion algorithms due the difficult
to synchronize the insertion, since it must be done concurrently. Even in cases where the
implementation is correct, it is not easy to improve the insertion algorithm’s performance
(for example reducing the overlapping) due the intricacy to collect information about the
spatial index.

This section describes RDebug, a new technique for index debugging, which al-
lows collect debugging information about the distributed spatial index once it has been
created. The following debug information about building consistency of the R-Tree index
are collected by RDebug: i) if each R-Tree node N are consistent between the servers that
store any replica of N; ii) if the MBR of each parent node intersects with the MBR of
their children, iii) the presence of duplicated nodes on R-Tree or nodes being referenced
by more than one parent node, and iv) if the value M and m of the nodes are compliant
with the R-Tree descriptions as shown in Section 3. Furthermore, it is possible to access
index data to help in optimization and minimizing the dead space and overlapping area.

The RDebug algorithm was based on R-Tree structure because it is used to in-
dex the spatial datasets on DistGeo platform presented in our work on Sub-Section
3.1. RDebug can be used with any index similar to R-Tree like Hilbert R-Tree
[Kamel and Faloutsos 1994], since the RDebug algorithm uses the nodes organization of
the R-Tree to collect the debug information.

Algorithm 1 shows the RDebug technique for debugging the distributed spatial
index, using the index structure itself. The algorithm has two steps: 1) The algorithm pro-
cessing is similar to the search in an R-Tree with a top-down traversal; 2) The algorithm
does a bottom-up traversal on R-Tree, constructing the result with the debug information.

RDebug has been implemented on DistGeo platform. The R-Tree nodes are dis-
tributed and replicated over the cluster. Thus, RDebug can be processed on DistGeo
platform without bottlenecks and point of failures. Besides, the R-Tree replicated nodes
in the cluster allow load-balancing in the distributed R-Tree index traversal. During the
traversal, at every node accessed the traversal might go to a node of the cluster with less
workload, increasing the RDebug algorithm performance.



Algorithm 1: RDebug(T )

Data: T reference of the root node of R-Tree tree
Result: Debugging information about distributed R-Tree tree

1 S1 [Search subtrees]
2 if T is not leaf then
3 stores the number of children entries in each replica server of T
4 for each entry E in T do
5 server ← choose one server, randomly, that keep one replica of E
6 send msg to server to process the node’s child of E on step S1
7 end
8 else
9 verify the consistency of T in other replicas

10 Invoke step S2 [Aggregation]
11 end
12 S2 [Aggregation]
13 information⇐ the child’s information stored on shared memory by

replicas of T
14 replica_consistency ⇐ verify the consistency of T in others replicas
15 node_consistency ⇐ verify the consistency of M and m values of T
16 overlap⇐ overlap area of T
17 dead_area⇐ dead area of T
18 bound⇐MBR of T
19 add in information: replica_consistency, node_consistency, overlap,

dead_area, bound
20 if T is leaf then
21 if T is root then
22 send response with R-Tree nodes information to app client
23 end
24 send msg with information to parent of T
25 else
26 entry_info⇐ information sent by child node
27 mbr_consistent⇐ verify if the bound of the child node is equal to

bound of entry of T that points to this child
28 add in information: entries_info, and mbr_consistent
29 count⇐ retrieve the number of child entries, which did not send a

debugging response and decrement by 1
30 if count == 0 then
31 if T is root then
32 send response with information to client
33 else
34 send msg with information to parent of T
35 end
36 else
37 store information on shared memory
38 end
39 end



In the first step, called S1 [Search sub-trees] (lines 1 - 11), the Algorithm 1 tra-
verses every node of the R-Tree starting from the root node to the leaves. The first request
is sent to any server, which stores a replica of the root node.

If the node T is not a leaf (lines 2 - 8), then the number of children entries is
stored to control the number of expected answers associated to T in the second step of the
algorithm. This information is stored in a shared memory accessed by all servers with a
replica of T . Lines 4− 7, show that for each entry E in T , a message is sent (continuing
step S1) to any server that holds a replica of the child node of E, carrying on the first step
in the children nodes. If T is a leaf, the second step, named S2 [Aggregation] is started.

Second step aims (lines 12 − 39) to aggregate the information about the index to
be used for future debugging. This step returns debugging information about each node of
the R-Tree. The index itself is used to aggregate this information using the cluster com-
putational resources to improve the algorithm’s performance. The index reverse structure
facilitates the collection of the debugging information, as one node of the R-Tree is re-
sponsible to aggregate only the information of its children.

The debug information about each node of R-Tree in stored in a shared memory
that can be accessed by any server that store a replica of T . The RDebug update the
information about the node T that is being analyzed between the lines 13− 18.

In the line 13, the information is retrieved from the shared memory. Line 14
verifies the consistency of T in the servers that store any replica of T . Line 15 verifies
the consistency of M and m values. Lines 16 and 17 calculate the overlap and the dead
space area, respectively, for each node of the R-tree. Line 18 get the MBR of the T . This
information is inserted in information on line 18.

If the aggregation step is being executed in the leaves (lines 20 - 24), then there
are two options. If T is the root node (line 22), the node information is sent to the client
application. If T is not the root node, in line 24, the information is sent to the parent node
of T .

If the aggregation step is in an internal node (lines 26 - 39), the algorithm aggre-
gates the information of the children nodes. In the line 29, the algorithm receives the
information sent by the child node. Line 27, verifies if the MBR of the entry that points
to the child node is indeed the same MBR sent by the child node.

Line 28 adds the data processed from lines 26 and 27 in information. Line 29
acquires the number of children nodes that not sent debugging information yet. This value
is stored in the variable count, which is decremented and updated on shared memory.

If every node has sent the answer, the variable count then will hold the value 0
and lines 30-35 are processed. If T is the root node, then the information is sent to the
client application, otherwise, all information collected is sent to the parent node of T . If
the variable count is greater than 0, then the client information is stored in the shared
memory to be used until until each reply is received by child nodes.

The algorithm 1 was implemented in the DistGeo platform to collect the debug-
ging information of the built distributed R-tree. This information is used in the platform
to find out indexing issues and for speed up the searching on an R-Tree. Using RDebug
algorithm it is possible debug the searching algorithms in a single R-Tree. For exam-



ple, the Window Query algorithm shown on Section 3. Whereas, algorithms that access
many R-Trees, such as Spatial Join, need a deep change, as the algorithms can go through
different paths.

Figure 3. RDebug Visualizer

The algorithm RDebug have collected debugging information about the R-Tree
index built during the insertion of the dataset. Figure 3 shows a graphical tool (RDebug
Visualizer) created in our work to visualize the collected debugging information. RDebug
Visualizer shows the structure of the distributed R-Tree index and allows the analysis of
each node of the R-Tree. The output of the RDebug algorithm shows which nodes are
currently inconsistent. The user can access the path of the node and visualize the node’s
inconsistent information.

5. Evaluation

The RDebug algorithm have been evaluated on 3500 MHz Intel(R) Core(TM) i7-2600
CPU workstations connected by 1 GBit/sec switched Ethernet running Ubuntu 14.04.
Each node has 16 GB of main memory. The experiment results were achieved with 1, 2,
4 and 8 servers on DistGeo platform.

The experiments were performed using three datasets with different characteris-
tics. The first contains 1000000 points of business listings and points of interest (POIs)
from SimpleGeo1. The second dataset comprises 226964 lines representing the rivers on
Brazil from LAPIG2. The third contains 220000 polygons of the census of USA from
TIGER/Line3.

The RDebug was executed on DistGeo platform after the indexing of each dataset.
The algorithm was able to collect information about the R-Tree index, such as dead space

1https://github.com/simplegeo
2www.lapig.iesa.ufg.br
3Census 2007 Tiger/Line data



and overlapping area. Furthermore, RDebug algorithm has succeeded to collect the index
structure allowing visualize each data set R-Tree index on RDebug Visualizer tool.

Three inconsistencies were deliberately inserted in the index to evaluate the RDe-
bug: i) inconsistencies between parent and child nodes bounding, ii) nodes filled with
more than M entries and iii) duplication of a node on R-Tree. The RDebug algorithm
was able to identify this inconsistencies in every distributed R-Tree related to datasets.
The replica consistency on DistGeo is provided by Apache Cassandra [Cassandra ] and
no replica inconsistencies was found in any test.

(a) Node inconsistency (b) Bound inconsistency

Figure 4. RDebug algorithm on business listings dataset

Figure 4 shows the result of RDebug algorithm with the business listings dataset
in RDebug Visualizer tool. An example of node inconsistency is shown in Figure 4(a),
which the R-Tree node N1127 contains only three entries. This number of entries violates
the m value presented in Section 3. Figure 4(b) shows the bound inconsistency between
node N444 and one of its children. The duplicated nodes identified on R-Tree are shown
on final report by RDebug algorithm. The user can traverse the R-Tree path on RDebug
Visualizer to identify these duplicated nodes.

6. Conclusion
DistGeo platform presents an approach for processing distributed spatial operations
through the distributed R-Tree index. Due to the distributed processing nature on this
platform an issue arises: debugging the R-Tree index distributed in a cluster of comput-
ers.

We have seen researches on spatial data processing and distributed debugging, but
none of them propose techniques for debugging spatial algorithms in an R-Tree. Our work
presents the RDebug algorithm for debugging the building of a distributed R-Tree index.
RDebug uses the R-Tree index itself to gather the debug information. The data gathering
is achieved in a distributed way, improving the debugging algorithm efficiency.

A new peer-to-peer platform (DistGeo) was proposed in our work to process dis-
tributed spatial algorithms. RDebug has been implemented in DistGeo platform. The



R-Tree nodes are distributed and replicated over the cluster. Thus, RDebug can be pro-
cessed without bottlenecks and point of failures.

A graphical tool(RDebug Visualizer) has been created to visualize the structure
of the distributed R-Tree index and the debugging information about the index building.
Using this debugging information, we can identify discrepancies in the index building and
optimize the R-Tree index too. The RDebug algorithm can be used to collected debug
information in any index with spatial nodes organization similar to R-Tree (e.g. Hilbert
R-Tree [Kamel and Faloutsos 1994]).

Ongoing work includes modify the RDebug algorithm to debug the Window
Query and Join Query searching algorithms. The RDebug algorithm is easily adapted
to gather debugging information for Window Query. Whereas, for Join Query algorithm,
RDebug must be changed considerably, since the traversal is processed in two different
distributed R-Trees. Another ongoing work is to simulate node replica inconsistencies
to evaluate the ability of the Rdebug to identify this inconsistencies. On future works,
the algorithm RDebug will be evaluated in larger clusters and performance results will be
collected.

References
An, N., Lu, R., Qian, L., Sivasubramaniam, A., and Keefe, T. (1999). Storing spatial data

on a network of workstations. Cluster Computing, 2(4):259–270.

Beckmann, N., Kriegel, H., Schneider, R., and Seeger, B. (1990). The R*-tree: an efficient
and robust access method for points and rectangles, volume 19. ACM.

Bentley, J. (1975). Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):517.

C. E. Mcdowell, D. P. H. (1989). Debugging concurrent programs. ACM Computing
Surveys, 21:593–622.

Cassandra, A. The apache software foundation. URL: http://cassandra. apache.
org/(visited on 24/08/2013).

Comer, D. (1979). Ubiquitous B-tree. ACM Computing Surveys (CSUR), 11(2):121–137.

de Oliveira, S. S., Vagner, J., Cunha, A. R., Aleixo, E. L., de Oliveira, T. B., Cardoso,
M. d. C., Junior, R. R., Bloco, I., and Campus, I. (2013). Processamento distribuído
de operações de junção espacial com bases de dados dinâmicas para análise de infor-
mações geográficas. XXXI Simpósio Brasileiro de Redes de Computadores e Sistemas
Distribuídos.

de Oliveira, T., Sacramento, V., Oliveira, S., Albuquerque, P., Cardoso, M., Bloco, I., and
Campus, I. (2011). DSI-Rtree - Um Índice R-Tree Escalável Distribuído. In XXIX
Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos.

Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swine-
hart, D., and Terry, D. (1987). Epidemic algorithms for replicated database mainte-
nance. In Proceedings of the sixth annual ACM Symposium on Principles of distributed
computing, pages 1–12. ACM.

Elshoff, I. J. P. (1989). A distributed debugger for amoeba. In In Symposium on Parallel
and distributed tools, pages 1–10. SIGPLAN Not.



Fonseca, R., Porter, G., Katz, R. H., Shenker, S., and Stoica, I. (2007). X-Trace: A per-
vasive network tracing framework. In 4th USENIX Symposium on Networked Systems
Design And Implementation, pages 271–284. Cambridge MA, USA.

G., B. E., V., C. T., C., N., D., M. W., and D, H. T. (2011). REME-D: a Reflective Epi-
demic Message-Oriented Debugger for Ambient-Oriented Applications. ACM, pages
1275–1281.

Gottbrath, C. (2009). Deterministically troubleshooting network applications. In Techni-
cal report, TotalView Technologies. TotalView Technologies.

Guttman, A. (1984). R-trees: a dynamic index structure for spatial searching, volume 14.
ACM.

Hood, R. (1996). The p2d2 project: building a portable distributed debugger. In In
Symposium on Parallel and distributed tools, pages 127–136. ACM.

Kamel, I. and Faloutsos, C. (1994). Hilbert R-tree: An Improved R-tree using Fractals.
In VLDB 20th, page 509. Morgan Kaufmann Publishers Inc.

Kerr, N. (2009). Alternative Approaches to Parallel GIS Processing. Arizona State Uni-
versity - Master Thesis.

Koudas, N., Faloutsos, C., and Kamel, I. (1996). Declustering spatial databases on a
multi-computer architecture. Advances in Database Technology-EDBT’96, pages 592–
614.

Schnitzer, B. and Leutenegger, S. (1999). Master-client r-trees: A new parallel r-tree
architecture. In Scientific and Statistical Database Management, 1999. Eleventh Inter-
national Conference on, pages 68–77. IEEE.

Stanley, T., Close, T., and Miller, M. (2009). Causeway: A message-oriented distributed
debugger. In Technical Report HPL-2009-78. HP Laboratories.

WH Cheung, JP Black, E. M. (1990). A Framework for Distributed Debugging. IEEE,
pages 106–115.

Xie, Z., Ye, Z., and Wu, L. (2008). A two-phase load-balancing framework of parallel
gis operations. In Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008.
IEEE International, volume 2, pages II–1286. IEEE.

Zhang, S., Han, J., Liu, Z., Wang, K., and Feng, S. (2009). Spatial queries evaluation with
mapreduce. In Grid and Cooperative Computing, 2009. GCC’09. Eighth International
Conference on, pages 287–292. IEEE.

Zhong, Y., Han, J., Zhang, T., Li, Z., Fang, J., and Chen, G. (2012). Towards parallel
spatial query processing for big spatial data. In Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International, pages
2085–2094. IEEE.


