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Abstract. In the past few years a growing number of cities have started moni-
toring the position of public transportation vehicles using GPS devices. Most of
these trajectory data are released in raw format and usually have issues, such
as measurement errors. Providing insights from these valuable (and noisy) data
is a major challenge in larger cities. In this paper we present a system, called
Vistradas, for visual analytics of urban trajectory data. Vistradas allows users
to analyze use cases related to trajectories of public buses such as: analysis of
bus uniformity, verification of bus route, and the impact of events in bus traffic.
Our proposed Vistradas system helps user to get insights into various aspects of
public transportation.

1. Introduction

There is a fast growing use of new technologies (e.g., cheap GPS devices, ubiquitous
sensor and cellular networks) that generate large amount of data in the form of trajectories.
Basically, a trajectory is a sequence of pairs (location, timestamp), which may contain
some other attributes (e.g., temperature, velocity), generated by a moving object. Since
trajectory data in their raw format do not bring much valuable information to users, data
analytics have a key role to help people get useful insights from trajectory data.

This paper presents an on-going research project for visual analytics of urban tra-
jectory data. Vistradas is a Web-based visualization system that allows users to visualize
use cases related to trajectories of public vehicles. In this paper, we make use of trajecto-
ries of public buses in the city of Rio de Janeiro. As the data presented noisy information,
we implemented a pre-processing step to deal with these issues, and also a data normal-
ization step for our use cases (see Section 3). For the processed data, we created use cases
(described in Section 4) that focused on quality of bus service, namely: (1) analysis of
bus uniformity, (2) verification of bus route, and (3) the impact of events in bus traffic.
Data reports from these use cases can help city bus authority to inspect and monitor bus
services in the city. Finally, in Section 5, we briefly describe the currently research we are
conducting with the Vistradas system.

2. Related Work

There are several research and commercial systems that provide features to monitor and
visualize trajectory data. For instance, [Pu et al. 2013] uses taxi trajectory data to build
visual reports for monitoring city traffic. AITVS [Lu et al. 2006] is a visualization sys-
tem to analyze, monitor and report traffic conditions. CubeView [Shekhar et al. 2002] is a



Web-based visualization package for building summarizations of traffic trends on top of a
multi-dimensional data warehouse. [Albuquerque et al. 2013] describes a system to mon-
itor truck fleets, which can be integrated with tweet data to georeference traffic-related
facts. SeMiTri [Yan et al. 2010] is a system that semantically enriches trajectories (i.e.,
sequence of places where a trajectory has passed/stayed) by using other geographic data
sources.

More related to our proposed system are CommonGIS [TAIS 2014] and M-Atlas
[M-Atlas 2014]. CommonGIS is a general GIS tool with some capabilities for cleaning,
integrating and reporting basic summary statistics of trajectory data. M-Atlas provides
mechanisms to store and query trajectory data (e.g., range, nearest neighbor queries with
a temporal/relational predicate), as well as features for mining trajectory patterns. Exam-
ples of such patterns include finding frequent pattern of movement, finding dense areas of
traffic jams, among others.

Nevertheless, our proposed Vistradas system is different from previous systems
since we are not only building visualizations/reports for traffic monitoring or a tool to
store and query trajectories. Instead, we are interested in providing tools for cleaning,
managing, integrating, and analyzing statistically large urban trajectory data in order to
provide city insights to public managers. To the best of our knowledge, such analysts is
not facilitated in previous works. In particular, we are not aware of any previous systems
that analyze the use cases in this paper.

3. Data Analysis

In order to describe the uses cases we first characterize the GPS data obtained from buses
operating in the city of Rio de Janeiro. The raw trajectory data was obtained from Septem-
ber 26, 2013 to January 9, 2014. It contains information for more than 9,000 buses of
around 400 bus lines in Rio de Janeiro!. In total there are more than 100 million GPS
entries for the mentioned period.

Each GPS data entry has the location of a bus (latitude and longitude), timestamp,
bus ID, line ID, and bus velocity. The time between consecutive GPS measurements
ranges from anywhere under a minute to over 10 minutes, with an average of 4 minutes.
We also had access to GTFS data, which contain general information about the bus routes,
such as bus stop locations and expected schedules. In general each route consists of two
trips, one going from origin to destination and the second representing the return trip. The
GTES data contain a complete definition of each such trip as a sequence of line segments
tracing the streets of the route from origin to destination.

The raw trajectory data itself presented problems, such as: no information about
the direction in which the bus is traveling; and, in some cases, wrong latitude/longitude
positions and poor time resolution (i.e., much higher than 10 minutes). To deal with
these issues and also to normalize the data, we implemented a pre-processing component,
depicted in Figure 1. In the following, we present the main steps of this process.

Cleaning: the first step in the pre-processing phase is, for each bus trajectory ¢r; in the
dataset, to remove GPS entries with distance higher than §, (e.g., d,=100 meters) from
expected route, and trajectories with GPS resolution higher than ¢; (e.g., 6;=10 minutes);

'The GPS data can be obtained in www.rio.rj.gov.br/web/dadosabertos.
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Figure 1. Data pre-processing workflow: cleaning, fragmentation and normaliza-
tion of raw trajectory data to build cumulative space-time bus movements.

Fragmentation: from the cleaned trajectory dataset, the next step is to discover the bus
direction for a given period of time. We fragment ¢r; where each fragment represents
the bus trip in one of the line directions. To perform these tasks we rely on the expected
routes of the line directions using the GTFES data;

Normalization: the final step is to normalize the segmented bus trajectories, which are
going to be used in the use cases. This step calculates the cumulative time and distance
from the beginning of the bus route for a given bus trip (see examples of cumulative
space-time trajectories in Figure 1). To calculate the cumulative distance, we measure the
Euclidean distance between consecutive measurements in the expected route provided in
the GTFS data (high resolution data). Then, we project a given GPS coordinate on its
expected route and calculate its distance to the previous GPS coordinate in the trajectory.
Since it is very rare (from our data) to have GPS measurements at the beginning of the bus
trips ¢y, we calculate ¢, by interpolating the time using the last reported GPS measurement
before ¢, and immediately after ¢y,. Once ¢, is computed, all the other times relatively to
to can be easily calculated along the bus route.

4. Use Cases Description

We now describe three use cases our Vistradas system supports using the normalized
trajectory data we previously described. These use cases are all related to quality of
service of bus lines in the city of Rio de Janeiro.

4.1. Analysis of Bus Uniformity

The first use case is bus bunching, a common problem that occurs when two or more buses
of the same line are very close to each other along their routes. To detect this problem, for
each line we compute a bus_bunching_score defined by Equation 1. This score measures
how much the spatial distribution of buses along their routes deviates from an expected
distribution. A bus line with higher bus_bunching _score is more likely to suffer from the
bus bunching problem.

The steps to calculate bus_bunching_score are: (1) for a given bus line, we compute
the expected distance between buses by dividing the total number of buses n running on
a given time interval (e.g., 4 hours) by the route length [,.; (2) then, for all adjacent pairs
n — 1, we calculate how much buses deviate from the expected distance by subtracting it
from the observed distance d; of each pair of adjacent buses (on route) in a given line; (3)
the final bus bunching score of a line is then the average deviation.
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For the bus bunching analysis, we first rank the buses according to the
bus_bunching _score value during a particular day. Then, given a ranked bus line, we
show a map with the corresponding distribution of buses and a graph presenting the dis-
tribution of the buses in time and space. For this visualization, each dot on the map (and
on the graphic) represents a single bus. For example, Figure 2 shows a high bus bunching
score for the distribution of buses in line 460 on November 13, 2013. From this example
we can observe that buses were very close to each other during rush hours (between 4pm
and 8pm) near 4km of their origin route point (at Rodrigo de Freitas Lagoon).

4.2. Verification of Bus Route

The second use case involves the verification of whether buses are respecting their ex-
pected routes. This can be useful, for instance, for contract auditors interested in knowing
whether the bus companies are respecting their routes, or even for bus companies ensuring
their drivers are respecting the expected routes.

Our route verification algorithm works as follows: (1) given the expected route r
(obtained from the GTFS data) for a line /.., and the bus GPS measurement p, we calculate
the shortest Euclidean distance min_dist(p, r) between every p for a particular bus in [, and
the sequence of lines defining 7; (2) in the second step, we measure how much all buses
in [, deviate from the expected route r. We calculate the deviation score deviation_score
by taking the average min_dist(p, r) over all GPS measurements of line /,., as:

1 n
deviation_score = — min_dist(p;,r 2
2 min-dis(p ) @)

Using Vistradas we are able to detect bus lines with the highest deviations, which
can help us understand the source of the problem. In Figure 3, we show an example of
bus line 906 that obtained a high deviation value. We can clearly see the buses for line
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Figure 3. Route verification using the bus line 906. Green line is the expected
route provided in the GTFS data, and black dots are the GPS measurements.

906 systematically changed their route on this particular day. We can also observe both
the expected route (green line) and the actual route (black dots) on the same visualization
for a given line, where there are many GPS measurements (black dots) far away from
their expected route (green line). Since the GPS used in the buses are not so accurate in
reporting their real locations, the GPS data may contain imprecise measurements, which
may be due to the nature of device or occlusion in the area. Nevertheless, we can see many
black dots very close to the expected route and a few ones (marked with a red circle) far
away from the expected route, which may indicate a possible detour.

4.3. Impact of Events in Bus Traffic

The third use case involves the impact of events on bus traffic. For example, road con-
structions, natural phenomena (e.g., heavy rain, mudslide), sport or music events, among
others, are some events that can have a negative impact on the city’s traffic. In order
to measure the impact of events, we calculate the difference between the average traffic
velocity on the bus routes in a period before and after a given event. Vistradas allows
users to select a particular date and then plot the difference of velocities before and after
the given date. Figure 4 shows the impact of the Perimetral overpass fall on bus route
121. The region in red color shows a significant impact on bus velocity: a decrease of
8Km/h. We also present the information in a line graphic, so that the user can compare
the difference easily and, if desired, select a point in the line to see on the map. This kind
of information can be very useful for city planners to verify the impact of planned and
unplanned events on city’s traffic.
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Figure 4. The traffic impact before and after the implosion of Perimetral overpass.

5. Conclusion and Ongoing Research

This paper describes Vistradas, a Web-based system that provides visual analytics of ur-
ban trajectory data. This paper shows a few use cases supported by our Vistradas system
using real bus GPS data.

As for the current status of our Vistradas system, we are developing two new use
cases for real problems that the city of Rio de Janeiro faces: (1) we are integrating the
bus GPS data with data coming from weather stations, microbloging, and news websites
to get new insights of the city; and (2) using the historical GPS data, we are building
predictive models to make time-prediction of buses [Kormaksson et al. 2014] for a few
particular scenarios (e.g., when will the bus line 121 arrive at my stop 15? when will I get
to my final destination?).
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