UTILIZAÇÃO DE ELETRODOS DE DIAMANTES NO PROCESSO DE DEGRADAÇÃO DE ORGÂNICOS

Luiz Carlos Rosa¹ (UNIVAP, Bolsista PIBIC/CNPq) Antônio Fernando Beloto² (LAS/INPE, Orientador)

RESUMO

Este trabalho, iniciado em agosto de 2015, tem como objetivo a continuidade ao projeto de Iniciação Científica em andamento desde 2013, que é a utilização de eletrodos na degradação de compostos orgânicos. Inicialmente em 2013 foram produzidos filmes de diamantes dopados com boro sobre substrato de titânio(DBB/Ti) através da técnica CVD(Chemical Vapor Deposition) em um reator de filamento quente, que foram utilizados como anodos na degradação do pesticida carbofurano no período de 2014. O trabalho atual trata-se de melhorar as características do material e sua eficiência como eletrodos na degradação do composto orgânico. Os procedimentos usados nos crescimentos serão os mesmos variando apenas as concentrações de hidrogênio e introduzindo um gás inerte o argônio. Os filmes de diamante foram crescidos usando diferentes concentrações de argônios X=0,15,30,45,60, com (99-X)% H₂ e 1%CH₄. Uma linha adicional de l H₂ passando através do borbulhador contendo B₂O₃ dissolvido em metanol foi usado no arrasto do boro durante o processo de dopagem. A temperatura do substrato foi mantida em 630 °C. A pressão e a mistura gasosa de Ar/H₂/CH₄ foi mantida constante durante todo o experimento. O tempo de deposição foi de 16 h. Três conjuntos de amostras foram produzidos a) sem dopagem; b) sem dopagem com o arraste da solução com metanol sem o a adição B₂O₃ c) com a dopagem doping. Segundo a literatura os filmes obtidos em um ambiente rico em argônio e pobre em hidrogênio facilitam a renucleação e favorece as fases grafíticas, desta forma é possível manter um crescimento de diamante estável em equilíbrio com as fases grafíticas. A presença de ligações sp² os torna mais eficientes como condutores elétricos principalmente para aplicações eletroquímicas. Estes filmes serão testados no reator de fluxo para verificar a eficiência no processo de degradação em função da concentração de argônio.

E-mail: beloto@las.inpe.br

¹ Aluno do curso de Engenharia Ambiental – E-mail: luizcarlosrosa0@gmail.com

² Pesquisador do Laboratório Associado de Sensores e Materiais