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Abstract An alternative scenario to the Ngwira et al. (2014, https://doi.org/10.1002/2013JA019661) high
sheath densities is proposed for modeling the Carrington magnetic storm. Typical slow solar wind
densities (~5 cm�3) and lower interplanetary magnetic cloud magnetic field intensities (~90 nT) can be used
to explain the observed initial and main phase storm features. A second point is that the fast storm recovery
may be explained by ring current losses due to electromagnetic ion cyclotron wave scattering.

Plain Language Summary The 1859 Carrington magnetic storm is the largest storm in recorded
history. It is used as a model of an "extreme storm" by the U.S. Homeland Security for effects of such an
event on the U.S. population. Computer modelers have tried to duplicate the magnetic ground signatures of
the storm that were published in Tsurutani et al. (2003, https://doi.org/10.1029/2002JA009504). Some have
used extremely high solar wind densities, values which have never been detected in the space age. Here
we explain why assumptions of such high densities are unnecessary.

1. Results

We commend Ngwira and coauthors for their scholarly and excellent effort on modeling the Carrington 1859
magnetic storm. We have several comments, which, if adopted, may help improvemodeling results. We hope
that the authors will accept our comments in a positive light and redo their modeling in the near future.

2. Plasma Densities

High sheath solar wind densities of ~400 cm�3 have been assumed by Ngwira et al. (2014). Other researchers
have assumed quite different values for the solar wind densities. The steady state solution of Manchester
et al. (2006) predicts an unusually high slow solar wind density of 38 cm�3 at 1 AU. With a shock compression
factor of about 4 times, their model produces a downstream sheath density of 146 cm�3.

We believe that there is already evidence that plasma densities in the sheath sunward of (behind) the fast
forward interplanetary shock were not particularly high, but lower than the above two assumed values. If
we take an average solar wind density of ~5 cm�3 and a maximum compression ratio of ~4 as experimentally
(Kennel, Edmiston, et al., 1984; Kennel, Scarf, et al., 1984; Tsurutani et al., 2008) and theoretically (Kennel,
Edmiston, & Hada, 1985) shown for interplanetary space, we get a downstream sheath density of
~20 cm�3. That taken with the Tsurutani et al. (2003) and Lakhina et al. (2012) derived solar wind speed of
~1,850 km s�1 at 1 AU gives a ram pressure of 114 nPa. This ram pressure can produce a Sudden Impulse
(SI+) of ~160 nT less ground induction effects (Araki et al., 1993; Siscoe et al., 1968; Tsurutani & Lakhina,
2014). Thus, the 120 nT SI+ observed at the Colaba Observatory in 1859 extreme magnetic storm event
(Tsurutani et al., 2003) is easily explained by more-or-less ordinary solar wind density values. It should be
noted that a SI+ value of 120 nT is high, but nowhere near the record value of ~202 nT for the 24 March
1991 shock event measured at Kakioka, Japan (Araki et al., 1997).

We note that the shock and sheath are not part of the interplanetary coronal mass ejection (ICME)
(see Tsurutani et al., 2011), as some people have mistakenly stated in the literature. Although they are
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physically located adjacent to the ICME proper, the plasma does not come
from the same location of the Sun. The sheath is swept up and shocked
(heated and compressed) slow solar wind plasma and magnetic fields.
The solar and solar wind origins of the sheath plasma and magnetic fields
are different from those of the ICME.

One part of the ICME, the magnetic cloud (Burlaga et al., 1981; Echer et al.,
2008; Tsurutani et al., 1988), is characterized by low plasma beta
(β = 8π NkT/B2) values, where k is the Boltzmann constant, T is the plasma
temperature, and B is the magnetic field magnitude. Thus, this region
should not be a high plasma density region either.

If there are very high plasma densities, where would they be located?
There is one part of an ICME, which is known to have very high plasma
densities. This is the most sunward part, called the “filament” (see Illing &
Hundhausen, 1986). In almost all cases, this part of the CME does not reach
1 AU (this is one reason why we use a different name for ejecta that reach
1 AU: “interplanetary CMEs” or ICMEs). Very few (~4%) filaments have been
detected at Earth distances (Lepri & Zurbuchen, 2010). The first case of a
filament was observed by the Wind spacecraft in the 10–11 January
1997 ICME event and reported by Burlaga et al. (1998). The filament had

a peak density of ~164 cm�3 (several 5 min average values) and was located sunward of the magnetic cloud.
This location is the standard position within a CME at the Sun, as indicated by Illing and Hundhausen (1986).

Li et al. (2006) had placed a high-density ~1,800 cm�3 plasma plug in the region sunward of the magnetic
cloud to model a Dst ~1,600 nT Carrington magnetic storm. The authors placed such high densities behind
the magnetic cloud to attempt to explain the short duration of the magnetic storm recovery phase. The high
solar wind density produced consistency between an empirical model of Dst (Temerin & Li, 2002) and solar
wind parameters. This location would imply that such a high-density plasma plug might be an ICME filament.

In order to address the question of how high solar wind densities can become, we have examined all avail-
able 1 h averages at 1 AU from 1964 to 2017, ~54 years. Figure 1 shows the distribution of these hourly aver-
age densities taken from the OMNI data site. In the right-hand side of the figure is an enlargement of the
density events with values between 60 and 120 cm�3. The peak density occurred on day 210, 1977 and
was 118 cm�3. This appears to be a sheath event.

The average density for the ~54 years was 6.8 cm�3, a median of 5.2 cm�3, and a standard deviation of
5.5 cm�3. The peak in the histogram is at ~3.0 cm�3. In our previous calculation, we used the median value.
The reader should note that different solar wind features are known to have different densities. This figure
includes high-speed streams, slow-speed streams, ICMEs, corotating interaction regions (CIRs), and the helio-
spheric current sheet.

The density main distribution has been fitted with a skewed Gaussian function. This was done because
the value starts at zero and shows a tail distribution due to extreme values associated with ICMEs,
sheaths, CIRs, and HPS. The central position of this fitted function is 3.9 cm�3, which is closer to the med-
ian value rather than to the average value. The spread of this fitted function is 2.3 cm�3, which is ~1/2 of
the standard deviation of a normal Gaussian function. Note that the density functional curve fits well only
around the peak, underestimating values between ~10 and 30 cm�3, but overestimating the extreme tail
for densities above 60 cm�3.

For the extreme values, here taken as Np > 60 cm�3, another exponential decay function has been fitted,
with an exponential of e�(n/13.9 cm�3), This extreme tail function could be used by modelers to identify the
probability of the occurrence of extreme densities.

3. Magnetic Field Intensities

Figure 2 shows the OMNI 1 h average interplanetary magnetic field magnitude over the same time inter-
val as in Figure 1, from 1964 to 2017. The average magnetic field magnitude is 6.3 nT, the median is

Figure 1. One-hour average solar wind densities from 1964 to 2017. The
main part of the distribution is fitted with a skewed Gaussian function. The
extreme values (>60 cm�3) are blown up on the right-hand side. The latter is
fitted with an exponential function.
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5.6 nT, and the standard deviation is 3.2 nT. The maximum magnetic
field was 62 nT and the minimum was 0.4 nT. The peak in the histogram
is at 5.0 nT. We make the same caveats as for the plasma densities: the
composition of these magnetic field values is a mixture of many differ-
ent types of solar wind phenomena.

The entire magnetic field magnitude distribution has also been fitted with
a skewed Gaussian function. The central position of this fitted function is
4.9 nT, which is closer to themedian than to the average. The spread of this
fitted function is 1.9 nT. The function fits the bulk of the distribution well,
but underestimates the region between ~13 and 20 nT and overestimates
the distribution for values >30 nT.

For magnetic field magnitude values >30 nT, an exponential decay fit has
been made (e�(B/�4.7 nT)). This exponential decay can be used to calculate
the probability of extreme magnetic field magnitude events.

We believe that the value of interplanetary magnetic field Bz = �210 nT
considered by Ngwira et al. (2014) is too large and a bit unrealistic for
the 1859 Carrington magnetic storm. Tsurutani et al. (2003) and Lakhina
and Tsurutani (2017) have used the empirical relationship between the
solar wind speed and the magnetic field intensity of the magnetic cloud

at 1 AU (Gonzalez et al., 1998) to obtain themagnetic cloudmagnetic field of ~90 nT for the Carrington storm.
This leads to amaximum interplanetary electric field of ~160 mVm�1. During the Carringtonmagnetic storm,
the lowest latitude auroras were seen at 23° (Kimball, 1960). Using this latter information, the plasmapause
location was determined to be at L = 1.3. This in turn was used to derive themagnetospheric convection elec-
tric field of ~20 mVm�1 (Tsurutani et al., 2003). Assuming a magnetic field reconnection efficiency of ~10%,
this convection electric field corresponds to an interplanetary electric field of ~200 mVm�1. Thus, these two
estimates of the interplanetary electric field are in good agreement with each other. The resultant calculated
magnetic storm intensity was Dst = �1,760 nT.

4. High Plasma Densities and Fast Storm Recovery Phases

It was noted by Li et al. (2006) that the Carrington magnetic storm recovery phase was quite rapid, thus the
inclusion of a high-density plasma plug sunward of the magnetic cloud in their model. Here we postulate a
new idea for rapid storm recovery phases during extremely intense magnetic storms.

The magnetic storm intensity is related to the magnetospheric convection electric fields (Gonzalez et al.,
1989). The larger the convection electric field, the deeper themidnight sector penetration of the plasmasheet
ions and electrons toward the Earth. Assuming conservation of the particle adiabatic invariants, the ring cur-
rent particles gain more kinetic energy, leading to the observed larger negative Dst values (large
storm intensities).

Besides the higher ring current particle energies, there are several other important aspects of the convection
of energetic plasma to low L regions of the magnetosphere that are typically not considered. First, the
extreme compression of the particles in perpendicular temperature (conservation of the first adiabatic invar-
iant) will lead to greater free energy for the loss cone instability (Kennel & Petschek, 1966; Tsurutani &
Lakhina, 1997). Additionally at lower L the loss cone size is substantially larger. Thus, for both of these reasons,
we suspect that the wave intensities (both proton electromagnetic ion cyclotron waves and electron electro-
magnetic (chorus) waves) will be substantially greater for extreme magnetic storms. This can be tested by
wave measurements during magnetic storms of lesser intensities and theoretical modeling. Second, because
of the greater loss cone size and the greater wave intensities, rapid ring current losses can be expected. The
more intense the storm, the faster the ring current loss rate. Wave coherency (Tsurutani et al., 2009, 2013;
Lakhina et al., 2010; Bellan, 2013; Remya et al., 2015) in wave-particle cyclotron resonant interactions should
be considered in any updated model.

In the above, we have focused on wave-particle interactions for the loss of extreme storm ring current parti-
cles. However, it is noted that other (standard) loss processes (Jordanova et al., 1998; Kozyra et al., 2006) will

Figure 2. Same format as in Figure 1 but for the interplanetary magnetic
field magnitude B0. A blowup of the magnetic field between 30 nT and
70 nT is given in the inset.
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also be in effect for extreme magnetic storm cases. Coulomb collisions and charge exchange processes may
be substantially higher for low L-shell ring currents. Theoretical comparisons should be made to determine
the relative losses associated with the different mechanisms.

5. Final Comments

Our hope is that Ngwira et al. and other magnetic storm modelers will try to include some of these para-
meters to model the Carringtonmagnetic storm. So far, a variety of parameters have been assumed and used,
with only mixed results so far. We have made arguments why high plasma densities either in the sheath, the
ICME magnetic cloud, or trailing ICME filament are not needed to explain the Carrington event features.
However, it should be recognized that ring current particle losses are nonlinear (increasing rate of loss with
increasing storm intensity), and not just a constant factor. We hope modeling with the numbers given in this
comment will allow a better match between models and observations.
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