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ABSTRACT 

Shallow impurity states are discussed for n-type semiconductors with 

emphasis on influence of the cluster states, type of disorder and many-

-valley character of the indirect-gap semiconductors. The random nature 

of the system is taken into account by analytical and simulation 

formalisms for the noninteracting one-band model and Hubbard and 

unrestricted Hartree-Fock-Roothaan models for correlated electrons. 

It is shown that in a wide range of impurity concentrations, such 

formalisms explain many of the electronic properties of doped 

semiconductors. The impurity states for a two-dimensional system are 

also discussed. 
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I. INTRODUCTION 

In solid state physics we are familiar with the properties of 

crystalline materiais (CM),in whichelectrons move in Bloch states extended 

throughout the whole material. The study of the electronic properties 

of such materiais is simplified by the periodicity of the lattice which 

enablesus to reduce the problem to the solutions of the Schrbdinger 

equation in a single unit dell. Such a description of.the electronic 

states of a crystalline material leads to a set of energy bands, 

E(k) - k being the crystal momentum, whidh extend to the surface of the 

Brillouin zone. In Fig. 1 we show schematicallytwo distinct situations 

of a simplified bandstructure E(k), and their corresponding density of 

states, D(E). They are separated by an energy gap A with a Fermi energy 

F indicating whether a band is partly ar completely full. However, 

many important materiais, such as alloys, liquids and amorphous solids, 

do not exhibit the strict periodicity of a crystal structure. Such 

materiais, or the mathematical models used to describe them, have come 

to be classified under the general heading of disordered systems. 

The first attempt to investigate, quantum mechanically, the 

electronic properties of a disordered system was made by Anderson. 1  

He considered the motion of noninteracting electrons in a lattice of 

random potential wells, and formulated the problem within the tight 

binding approximation, given by the following Hamiltonian 

H = E E.a. + 	+ E V..a.
+
a 1,1 	j ' 

(1 ) 

where ,a 1 "4" and ia 1  are, respectively, the creation and annihilation 

operators of an electron at the i-th site with energy E; and 

V i ~ is the energy integral for the transfer of an electron 

from the i-th to the j-th site (hopping matrix elements). In this 

model,"subsequently referred to as the Anderson model, the site energies 

are independent random variables, uniformly distributed with a width W, 

and theare taken as a constant V for nearest neighbours. Anderson 

lias shown that such a model can support a new type of states, namely a 
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localized state, fundamentally different from extended Bloch states in 

respect of their transport properties. A localized state is what it 

implies, a state of the electron, localized in a finite region ofspace, 

with a wavefunction which, on the average, decays exponentially within 

this region. This is shown in Fig. 2. We find that, relative to the 

ordered system, illustrated by the sketch of the density of states in 

Fig. 1, the band is broadened, and the state in the tail up to energy 

E c  are of the localized type. At the energy E c , known as mobility edge, 

the character of the states changes abruptly from localized to one 

which is essentially extended throughout the whole system. The position 

of CF  lying below E c  gives a metal-nonmetal (MNM) transition when it 

crosses CC.  Mott 2 , following Anderson's system, presented a clear 

exposition of the physics of MNM transition and suggestee that it 

might occur discontinuously. The electrical conductivity would jump 

from zero to a finite minimum value (minimum metallic conductivity) and 

then would increase smoothly at higher densities, in excellent 

aggreement with many experiments. On the other hand a scaling theory 

has been formulated which assumes that the MNM transition is continuous. 5  

_A much celebrated formula derived by Mott at which value would occur a 

MNM transition is N
C  1

/ 3 a
H
*  = 0.25. 2  The formula was applied 

successfully to the MNM transition observed in doped semiconductor. 6  

Here N is the impurity critical concentration and a
H
*  is the effective 

C 
Bohr radius of the donor electron. 

The other theory was introduced by Hubbard 7  who used a tight 

binding model, in which the interaction between electrons is included 

only when they are on the same atam, long-range Coulomb forces being 

neglected. In the limit of infinite separation, the atomic limit, the 

ground state of a monovalent array of atoms is obviously a state in 

which each electron is bound to an atam. When an electron jumps to an 

occupied site, this means that electrical conduction requires an 

activation energy which is equal the repulsion energy U for two 

electrons occupying the same site. Thus for N atoms the energy spectrum 

consists of two separate sharp leveis with N-fold degeneracy. The 

combination of such theories above consists in the well-known Mott-

-Hubbard-Anderson (MHA) model. An Hubbard Hamiltonian for disordered 

system is commonly written 
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H . E V..a. a 	+ 1  U E n. n 
ijo  ij ia ja 	ia  ia i-a ' 

(2) 

where the first term was described above throughout Eq. (1), but now 

with spin a, and V ij  playino the role of the random transfer integral; 

in the second term appears the interatomic Coulomb interaction Cor 

correlation) energy U and the number operator n ia  = 

In the MHA model, the impurity density of states (IDS) is split into 

two Hubbard bands situated within the band gap of the host conduction 

band (HCB). When the impurity concentration is much less than Nc , these 

two IDS are identified as the lower (D ° 	one electron per site) and 

upper (D -  - two electrons per site) Hubbard bands. With increasing 

impurity concentration, these bands will broaden and will eventually 

merge at N.  see Fig. 3. The correlation effects is seen in the D -

state forming stable bound states, found experimentally by Narita and 

coworkerl°  and investigated by Kamimura ll  in a many-valley 

semiconductor. 12  In essence, it appears that the role of the HCB in the 

phenomenon of MNM transitions is important primarily in the sense that 

it serves to determine the form of the cluster distribution of the 

(localized to extended) impurity states, as we will see later. In 

addition, recent work 13  has shown that the calculated value of the 

constant in Mott's condition N c
113a

H
* 

= 
const is subject to the vagaries 

of the choice of electronic wave function, as well as beingSensitive 

to the form of the HCB. The influence of the*host characteristics, such 

as the existence of a conduction band with a many-valley character, is 

believed to be of central importance in the behavior of the physical 

properties and has been the subject of many recent investigations. 13-2°  

This inference does not apply to direct-gap semiconductors which have 

an isotropic conduction band (e.g., GaAs and CdS), and the isolated 

donor problem is thus just that of a hydrogen atom. On the other hand, 

in indirect-gap semiconductors (e.g., Si and Ge) the donor electron 

wave funCtion is a sum over terms which are products of a rapidly 

oscillating Bloch wave with a hydrogenic envelope which satisfies an 

effective-mass Schr6dinger equation. In silicon, there are six valleys 

in the HCB at 	. O, and thus the is oround state of an isolated donor 
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has sixfold degeneracy in the framework of this effective-mass 

approximation, while germanium has four valleys. 

The presence of different constitutional atoms 21  or the effect of 

a random field, as in the impurity band of a doped semiconductor, can 

be described in terms of random-mass in the site energies e.. Within 

the context of the tight binding model, this is referred to as diagonal 

disorder. 22  Similarly, randomness in the off-diagonal matrix elements 

is called off-diagonal disorder. Clearly, in many cases, disorder 

of the diagonal and off-diagonal type will not be independent, but 

intimately linked. However, although interesting, such problems are 

mathematically highly complicated. Thus we expect that by 

studying the problem of diagonal and off-diagonal disorder by a computer 

cluster simulation through an unrestricted Hartree-Fock-Roothaan (HFA) 

scheme, we might gain information not only on their relevant systems, 

but also on their relative importance in a more complex structure. It 

is worth to mention that we also treat the problem of pure off-diagonal 

disorder analytically and by a cluster simulation in what follows. 

II. IMPURITY BAND MODEL 

The model we use to discuss the IDS is the usual one, where we 

regard the extra charge on a donor impurity atom as forming a Coulomb 

centre on which the electron is bound with a hydrogen-like wavefunction. 

As an example we consider bulk Si for which the dielectric constant is 

11.7 and the average effective mass is about 0.2 of the free electron 

value. Doping with P produces shallow impurity. leveis 0.045eV (0.61 

Rydberg) below the HCB edge, and so we picture the electrons in 

hydrogen-like 1s state with a Bohr radius of the ordercf18R. Increasing 

doping the metallic state occurs at densities above N
c 	

3.74 x 10 18 cm-3. 

(At this point, the donorswould be 64R apart if they were ordered in a 

cubic lattice). For example, in Si:P the interelectron spacing 

N
c
-1 / 3 

 

64. Since the interatomic distance for Si is 2.35, we see 

that the orbit , of the electron is sufficiently large that the lattice 

is very little distorted by the electron, which justifies the use of 

such a model. We can regard the impurities as completely randomly 
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distributed throughout the material, with only A restriction on the 

distance of closest approach of two impurities. 

Matsubara and Toyozawa (MT)" developedan one impurity band approach, 

which treats the random distribution of the impurities by a Green's 

function expansion, but neglects electron and impurity correlations and 

the influence of the HCB. Their approach starts from an one-electron 

tight binding Hamiltonian 

H . c E a.
+ 
 a. + E V..a.

+
a 

I 	 ij  
ixj 

(3 ) 

where the one-site energy E, was assumed to be constant and taken as 

the negative value of the ionization energy of an isolated impurity and 

Vo 	2£
I 
the unit for energy. 

Using an one-band formalism,density of states have been obtained 

and compared with those of MT. Some impravements have been ai-se carried 

out by the Heitler-London (HL) 25  and Alternant-Molecular-Orbital 

(Am0)26,27 r~dsviahoppingrutrixelements Um , ..which show different 

behaviour for each method as presented in Fig. 4. As in MT the c i  is 

considered constant. It has been shown 25 ' 27  that this assumption indeed 

holds for the impurity-concentration region of interest. See also 

Fig. 4. For the AMO calculation we show in Fig. 5 the IDS for different 

dimensionless impurity concentrations P = 321rN4:1 3, where N is the true 

impurity concentration. In Fig. 5 we show the calculated impurity 

conductivity. Here, it is worth to mention that the impurity 

resistivities calculated by the -present author -did - not take into 

account the many-valley character of the HCB 27,29  (e.g. for Ge and Si). 

As a first attemptifwedivide themby the number of minima of the 

material we will get rough agreement with experiments 26 . Such study is 

object • f our later work, as for example, following the idea of Saso 29 . 

Another improvement of the model above is described by the Hubbard 

model, Eq. 2, in which calculations give the IDS 5  shown in Fig. 7. With 

decreasing impurity concentration Kamimura ll ' 15 , applying the MT 
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formalism to the MHA model, calculated the criticai concentration 
2 

p c = 0.569 with.p c 	
327TN

c  a
*

'  
' at which the IDS splits into two bands 
H 

in agreement with the analytical determination of Kikuchi 30 . In the 

intermediate concentration region of impurity conduction, i.e., the 

transition region from insulating to metallic behavior, where the 

electron correlation plays an essential role, a characteristic 

activation energy E2 has been observed in the temperature and 

concentration dependences of the electrical conductivity 31 . These 

experimental observations have not been satisfactorily explained, but 

they•suggest that in highly doped samples some delocalized conducting 

states are formed within the impurity states near the band edge of the 

HCB. This inference has been verified by far-infrared photoconductivity 

experiments 32 . 

In Kikuchi's work, the energy gap between the Hubbard bands as a 

function of the impurity concentration has a remarkable similarity to 

the behavior of E2 for Ge:Sb. With increasing donor concentration from 

the low to high region, the £2 sharply decreases and vanishes at a 

criticai concentration N
c 

where the MNM transition takes place. 

Searching for a mechanism which enablesus to take into account the 

degeneracy of the indirect-gap semiconductor, in the low to 

intermediate 31  n-type doping regime, i.e., 10 16 	N < 2 x 10" and 

2 x 10 17 	N 	4 x 10 16 cm-3 , respectively, in Si:P and 10' < N 	10" 

and 10 16  < N 	10 17cm-3  in Ge:Sb, we have performed an improvement in 

the IDS of our previous formalism (Refs. 8 and 22), with such 

degenerate effects. Considering the degeneracy of the HCB minima in Si 

and Ge via Fourier transform v(k) of V 	we get the IDS for Ge:Sb and 

Si:P. They are shown in Fig. 8. In Fios. 9 and 10 we show the variation 

of the energy gap, Ag, between the IDS, compared to the experimental 

activation energy, c 2, of Ge:Sb and Si:P respectively. 

III. CLUSTER MODEL FOR IDS 

Worksto date haveconcentrated much effort in investigating cluster 

states which provide a great deal of interest in doped semiconductors, 
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particularly the Si:P system, which is a good system for, e.g., Raman 

studies, since it has the many-valley HCB necessary for a large 

electronic Raman cross-section, 17  as well as for electron spin 

resonance (ESR), photoconductivity, and far-infrared absorption spectra 

measurements, where cluster states have appeared in a dominant role. In 

the light of these investigations, some cluster approaches appeared in 

the literature, particularly those . that take into account the 

many-valley character of the HCB. Franien and Berggren, 2°  using a 

Heisenberg Hamiltonian, calculated the magnetic susceptibility and 

specific heat in the low concentration region, well below N c , found 

good agreement with experimental results in Si:P. For the exchange 

interaction, they used the Kohn-Luttinger (KL) (Ref. 33) wave functions 

because of the many-valley semiconductors in Si. 

With a computer we generate M random impurity sites {R i ; i = 1, 151) 

within a volume 2 of a diamond lattice as a host, as the locations of M 

substitutional impurities, in order to simulate a sample of a doped 

semiconductor with impurity concentration N = M/2. Surrounding these M 

impurities, another Ms  impurities were similarly generated, in such a 

way as to keep the impurity concentratàon unchanged. These M
s 

impurities 

are included to reduce surface effects and provide a mean field. With 

each impurity of the inner M impurities embedded in this mean field is 

associated a KL donor wave function ip 1  given by 

1  E F C 
vÇT 	

= rIci) 
2,=1  

(4) 

where .1) 2, ( -È) is the Bloch function associated with the £th of the v 

conduction-band minima of the host material (v = 6 for silicon), and 

F ci-1 is a hydrogenic envelope function in which the effective mass at 

each of these minima has been assumed to be isotropic. Thus the 

calculation is simplified, since the envelope function can be written as 
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F (7) = (w/01 3 ) 1 / 3 exp(-ar) , 

where a = 1/a *H . 

The Hamiltonian of the many-electron system is 

2 p. 

	

ion 4 	1 	el-el 	.4- 
H = E 	+ E V 	(r.) + — E V 	(r. - 

j 
i 2m 	i 	

1 	
2 i,j 

ion 
where V 	(r.) is the impurity-ión potential acting on the ith electron, 
el-el V 	Or. - r.) is the Coulomb interaction between the ith and jth 

electron, and the summations are over ali the M electrons in the volume 

P. This inner cluster will be solved numerically using an unrestricted 

HFR formalism with spin-polarized potential. This formalism" turns out 

to be similar to the Hartree-Fock theory used in previous calculations.22  

Accordingly, the following two sets of coupled Schrodinger equations 

arise: 

H (7)11 (7) = E Y (-;') a = +, 4,  and n = 1,M 
a 	na 	na na 	' (7) 

where 

(s) 

(6) 

2 	4,, 
H (11-1  = P + V"'"(7) ax / 	

2m 
(ir) 
	ue)(17‘ 

va 
(8) 

ex 
VC (r) is the Coulomb.potential, and Va  (r) is the spin-dependent 

exchange potential." 

The eigenstates of Eq. (7) can be expressed as 

4'
na

(7) =  
j 	jno 

(9) 

where oi (7) are given by Eq. (4). 
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+ 	P.A('(c..) - 	 . lj 	lj 	13 	lj 
S=Cr,-a 

(E 1  E 6 1 ) 

-1 0- 

Following the usual HFR procedure, we obtain 

Errip u„ _ 
CJ 	

vii ]cmi  . o , 	 ( 10) 
1 

where the matrix elements of R' a are given by 

	

H'.. .E 1  +a k
EJa 	+ 	+ 2 

kx1 
EP7c1.L(a i

A. k  ) lia 	 . 
x1  

4- 	E 	E PS  J I (età.  ) - E i 

	

s.a,-a k 	kk 	k xi 	 kxi kk  

H'.. . E S(à..) + [K(aP ij + (PT °. + ma 	I 	lj 	 11 	jj 	lj 

Some of these Slater integrais are multiplied by an interference 

factor, denoted here by I, derived from the many-valley charáter of 

the HCB, which is assumed as a valley-symmetric wave function. It is 

obtained as 3k,35  

1 v  
I = — E exp(4 	. 

v £=1 
(13) 

As a consequence of the valleys in Si, for instance, the overlap and 

the hopping integrais have an oscillatory behavior as shown in Fig. 11, 

which will reduce the broadening of the IDS. Neglectinq the third and 

fourth terms in Eq. 8 the formalism reduces to an one-band model, 

compared to MT scheme. 35  In Fig. 12 We show the IDS for this latter 

model with and without many-valley character of the HCB, as well as the 

effect 'of nonorthogona1ity, 22 '" for P = 1, corresponding to 

N = 1.92 x 10 1 "cm-3  in Si:P. The dots appearing on these figures are 

the inverse participation ratio (IPR) discussed below. 



IV. IMPURITY CLUSTER STATES,IDS AND DISCUSSION 

In Eqs. (11) and (12) we can vary a in order to get the optimum 

value of a which gives the two bands centered on their real values. 

Accordingly the center of gravity of D °  (4° >) remains almostuncharged 

in -1.0 Ry, while <D -> varies until we catch the optimum value of 

a 	0.8 which gives the experimental value 10 <D -> = 0.0555 Ry (-0.0275 

effective hartree). In Figs. 13 and 14 we showsuchascheme.' 7  We also 

use a = 1 and the corresponding experimental value U/V o  = 0.475 to 

calculate the IDS, - the term U remains Unaltered at 5/8 (effective 

hartree) with the inclusion of many-valley effect. In this case, again 

the <D o > remains unaltered while <D ->, at very low concentration, is 

lowered to a value of -0.0275 effective hartree which is consistent 

with the value found above. Such value was also found by Riklund and 

Chao"in their HF IDS calculation using a Chandrasekhar wave function. 

The IDS D(E) is normalized to 

fD(E)dE = -P-- = (M/2)a *3  
H 	' 

32r 

where p is defined as a dimensionless impurity concentration 

p = 32uMal*I 'h. For Si:P the critical concentration is around p c  = 2.0, 

taking a;.1(  = 17.3 A °  and Nc  = 3.74 x 10 18 cm-3  (Ref. 4). In our 

calculation we use inner clusters of M = 40 impurities, 960 outer 

impurities, and a configuration average over 50 samples. The Fermi 

energy is obtained through 

r E F 
D(E)dE = M x LS  a

H ' 
...co  

(1 5) 

at O K. Of course, E F  was assumed to be the same in the whole sample, 

that is, in each of the LS configurations. This should be checked with 

the assumption made in the HFR calculations, namely, that the first M 

states of low energy were occupied in each configuration. When this 

(14) 
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condition is not satisfied, we expect an interna] charge transfer 

between different configurations, and the HFR calculations would have 

to be performed accordingly. This "charge inhomogeneity" generation 

can, in some aspects, be compared to the self-compensation effects in an 

early work." 

Performing the calculation, the IDS are obtained, as shown in Fig. 15 

for the impurity concentration p = 0.5 (corresponding to 9.6 x 10 17 cm-2  

for Si:P). 

In order to obtain a microscopic view of the IDS, we have used the 

inverse participation ratio (IPR) that is also a measure of 

localization of the eigenstates.34,25, " It is defined as 

(IPR). 	E 	1B 
ji
.. 11/í E 	10.. 1 2  

cr 	j.i 	jia 

for the ith eigenstate with a-spin, where B.. comes from Eq. (9). The 

IPR, dots appearing on Fig. 15, varies from 1, corresponding to a state 

which is as localized as possible, to 1/M, correspondino to a state 

which is as extended as possible. Here, we'are faced with the combined 

effects of diagonal and off-diagonal disorder, in contrast to the case 

of only the off-diagonal disorder. With decreasing impurity 

concentration, that combined effect helps states to become localized. 

This agrees with the assertion of Yonezawa" in her calculation in a 

two-dimensional square lattice. There, the diagonal and off-diagonal 

matrix elements of the sites are characterized respectively by different 

uniform distributions, where the degree of disorder is considered, 

instead of concentration. 

For low concentration, most of the states have an IPR between 0.5 

and 1.0 indicating an isolated impurity state or a pair state. Going to 

intermediate regions approaching N c , where large clusters become more 

probable than isolated close pairs, the IPR for case (b) delocalizes 

less rapidly than for case (a), indicating a shift in the energy of the 

/ 22 	(1 6) 
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delocalized conducting states. Even for such higher concentrations, 

some of the occupied states will be localized, which is supported by 

the absorption measurements on doped silicon by Schmid," 1  who also 

theoretically estimated the band-gap narrowino:using arguments rather 

similar to the work of Berggren and Sernelius, 18  and the calculation on 

direct-gap GaAs by Serre et al.," 2  who focused attention on the relative 

multiple-impurity 	scattering and impurity-concentration fluctuation, 

obtaining a band tailing. In a recent paper of Sernelius, 18  where the 

ion potentials are approximated by pure Coulomb potentials and the 

donol- electrons are treated as an electron . liquid surrounding the 

impurity ions, the high-stress opticaI birefringence and piezoresistance 

were investigated in heavily doped many-valley germanium. This 

calculation is carried out including the number of valleys (v= 4), the 

effective mass, and a screening constant, and it shows that the band-

-tailing effects are reduced when the many-valley character of the HCB 

is taken into account. Now, taking the mean value of the IPR for each 

sample of the cluster, at a fixed concentration, and also the 

configuration average of the IPR (<IPR>) over ali the sample clusters 

as shown in Fig. 16, Curve 3D (Curve 2D will be discussed later), we 

can see that in case (a);no valley effect, the <IPR> for p < 0.3 

(corresponding to N < 5.76 x 10 17cm- ' for Si:P), is greater than 0.5, 

while for case (b), with valley effect, only for p < 0.8 (N < 1.92 x 

10 18 cm-3 ) the <IPR> is greater than 0.5. Calculating the magnetic 

susceptibility by a modified pair approximation including many-valley 

effects Andres et al. 19  showed that their results agree well with the 

experimental data up to concentration around 1.2 x 10 16 cm- ' (p = 0.6) 

for P-doped Si, which shows that the system is composed by isolated 

impurfties or pairs . of impurities. Our results, outlined above, are 

also in agreement with the conclusions reached by Thomas et ai. -9  

through their analysis of optical data."' Some experimental clues also 

existsin ESR (Ref. 44) investigation supporting this clustering evidence. 

For low concentration (N 	7.0 x 10 17cm-3 , p 	0.4), hyperfine-split ESR 

lines exfst and they are characteristic of electrons bound on donor 

sites. With increasing impurity concentration until clusters of eight 

or ten atoms form, this multfple une pattern fades into that of a 

single unresolved ESR une. For Si:P the delocalization occurs at 
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N = 3•7 x 10 	M-3  (p = 2.0). It is worth noting that for the same 

spatial disorder, the electronic correlation is much affected by the 

many-valley effect. The overlap,theexchange,andthe electron-hopping 

energy integrais on two neighboring donors are much reduced on the 

average and so is the broadening of the IDS, showing a new feature in 

the overall impurity states of indirect-gap semiconductors. 

An example of a two-dimensional analogue of the IDS has been 

detected in the inversion layer of a metal-oxide-semiconductor field 

effect transistor (MOSFET). A good description of the structure and 

properties of these devices are qiven by Stern and Howard" and Ando 

et al.' 5  The structure of such a device is that it consists of three 

layers: a metal electrode, an oxide layer, and the bulk semiconductor. 

If we consider a device where the semiconductor is p type, then it has 

the property that a n type inversion layer is produced at the interface 

with the oxide layer. It occurs as a result of the energy bands in the 

bulk semiconductor, near the interface, being bent down so that the 

bottom of the conduction band lies below
F. 

This arises as a 

consequence of the presence of positive charges 	near the surface of 

the oxide layer, which are associated with impurity ions or other 

Coulomb centres, or through the application of an electric field normal 

to the surface. In this way the inversion layer becomes populated with 

electrons, and because they are in a deep potential well their motion 

is quantized normal to the surface, so that motion in the inversion 

layer is essentially two dimensional (2D). Because of the random field 

produced by the charge centres near the surface of the oxide layer, it 

is to be expected that the states near the bottom of the first electric 

subband will be localized. These devices have therefore received 

considerable attention experimentally and theoretically. Recently we 

have drived our attention for such studies in order to know better the 

behavior of the impurity states in a 20 system. A 20 HFR calculation 

was performed and the results for the ‹IPR> is shown in Fig. 16. There 

we can see, compared to the <PR> calculation in 3D, how localized are 

the states in a 20 system. Also, results are shown for a one-band 

simulation formalism in Ref. 46. An extensive study of the 20 IDS, in 

the wake of Ref. 45, was done by da Cunha Lima et al.47,46,49 Such 
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study will continue to pay very much our attention in order to have a 

real picture of the impurity states in 3D and 20 systems. 
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FIGURE CAPTIONS 

Fig. 1- Bandstructures of a crystalline material and the corresponding 

density of states (below). Shaded regions denote occupied 

states. e
F 
denotes the Fermi energy. See text. 

Fig. 2- Density of states of a disordered system. c c  denotes the 

mobility edge. See text. 

Fig. 3- Overlap of two impurity Hubbard (D °  and D - ) subbands. E l , E 2  

and E3 indicate the activation energies involved in the 

system (Ref. 9) 

Fig. 4- The diagonal and off-diagonal matrix elements V
ii 

and 

respectively for MT, AMO and HL schemes, as functions of the 

inter-impurity distance R. . 
ij 

Fig. 5- Impurity density states (IDS) for various values of the 

dimensionless impurity concentrations P.3211-Na 3 . N is the true 

impurity concentration and aA(a -1 ) is the Bohr radius of the 

impurity. The position of E F  is indicated by dot-dashed lines, 

and the bottom of the HCB by dotted une (AMO Stcheme). 

V0 =2E
I'
and E

I 
is the ionization energy. 

Fig. 6- Dimensionless conductivity L as function of E F  for different 

values of compensation K and concentration P. The dots on the 

curves represent the degrees of compensation K. The dashed 

Une indicates h for K.O. 

Fig. 7- Hubbard IDS for various values of P. The position of E F  is 

indicated by dashed lines and the bottom of the HCB by a 

dotted une. 

Fig. 8- Hubbard IDS for various values of P. The arrows indicate the 

E
F 

and the dot-dashed lines refer to the bottom of the HCB. 

(a) The dashed lines refer to the case of neglecting the 

many-valley character of the HCB. The full lines refer to the 

inclusion of the latter assumption, i.e., for Ge:Sb. (b) IDS 

for Si:P. 
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Fig. 9- Variation of the energy gap, eg, between the IDS, compared to 

the experimental activation energy, c 2 , of Ge:Sb, for 

different concentration. 

Fig. 10- Variation of àg between the IDS, compared to the observed c 2  

of Si:P, with concentration. 

Fig. 11- The overlap and electron hopping energy integrais as a function 

of distance R between impurity centres. The dashed and 

full-drawn wiggly curves refer to the anisotropic cases. 

The dashed and full smooth curves refer to the case of 

neglecting the oscillatory factor deriving from the many-

-valley character of the HCB. The latter case is relevant to, 

for example, n-type CdS. The vector, Ã,is behAcenthe two 

impurity centres in the <100> direction. The arrows indicate 

the mean separation of donors at different concentrations. 
o 

The effective Bohr radius used was ati=17.2A. The impurity 

critica] concentration for MNM transition in Si:P is 

3.74 x10 1B cm-3 . 

Fig. 12- IDS without [(a) and (b)] and with [(c) and (d)] many-valley 

character of the Si-HCB. The nonorthogonality effect is 

presented in (h) and (d). lhe HCB is set at zero energy. 

The arrow indicates the E F' 
The dots corrspond to the inverse 

participation ratio. 200 configurations of 50 impurities, 

each for P=1.0, were used. 

.Fig. 13- Variation of <D - > and <00> as a function of a. N=3.8x10 16 cm-3  

Fig. 14- IDS for different values of a. P=0.0125 E N=2.3x10 16 cm-3  

Fig. 15- IDS without (a) and with (h) many-valley character of the 

Si HCB. The HCB is set at zero energy. Shaded area represents 

the overlap of split bands. The dots correspond to the IPR, 

and p=0.5 corresponds to 9.6x 10 17 cm-3 , for Si:P. The arrow 

indicates EF. 
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Fig. 16- <Lu.> 	<IPR> for various values of impurity concentration 

P(2D) and P 1 (30). For comparison P 1 .1.0 (06 aA=0.21, Mott's 

relation) corresponds to N=1.9 x10 18 cm-3 , P.16 (NON1.0.28) 

corresponds to 2.66 x10 12 cm-2 . The dots represent the 

individual L na , in 2D case, for each configuration, at a 

fixed P. 
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