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ABSTRACT 

The standard basis operators (S150) forma lism is used to 
etudy the problem of electron correlations in narrou; banda described by 
the Hubbard Hamiltonian. Exact Dyson equation in the matrix form for 
the SBO Green's fUnction is obtained by exploiting the self consistent 
many body theory developed by Fedro and Wilson, and Kishore. It is found 
that the present folmelism provides a natural extension of the Roth's two 
peles approximation scheme and reproduces the earlier spin wave resulte. 
Some inconsistencies in the Roth's scheme have also been discussed. 



Electron correlations play a great role in magnetism and 

metal-insulator transitions In narrow band materials(C. Hering, 1974). 

In a narrow nondegenerate band, Hubbard model (J. Hubbard, 1963) has been 

studied to consider the correlation effects. Hubbard used the standard 

basis operators (SBO) approach (J. Hubbard, 1965) to study the elementary 

excitations. The advantage of this approach is that ali the single site 

terms in the Hamiltonian can be considered exactly. Hubbard used an 

equation of motion method, which although suitable for the elementary 

excitations,cannot be used to calculate the correlation functions. Recently, 

a self consistent many body theory (A.J.Fedro and R.S.Wilson,1975) has 

been developed for the Green's functions which can be used to study both 

elementary excitations and the correlation functions. This theory gives 

the Dyson equation for any particle Green's function. In this paper, we 

apply this theory to obtain SBO Green's functions. 

In terms of SBO the Hubbard Hamiltonian (J. Hubbard,1963) 
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Here 1i a> is an eigenstate of the Hamiltonian 
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The Hamiltonian (4) has four eigenstates lio>, íi1>  , 	i l_ a> and 

li 2> corresponding to n a  = n_a = O; no  = 1, n_a=0; na  = O, n_o  =1 and 

n = n = 1 respectively. Here, n is the eigenvalue of the operator n. 
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The eigenvalues e ia  corresponding to the above four eigenstates are 
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The SBO L
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cause the transitions from the state lie> to 

the state 	ia> and satisfy the multiplication rules 
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Any operator O i  can be written in terms of SBO according to 
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From (7) the creation operators for the single particle excitations and 

spin waves can be written in terms of SBO as 
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Now, we consider the Green's function (A.J. Fedro and R.S. 

Wilson, 1975; D.N. Zubarev, 1960) 
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corresponding to a particular type of excitation. For example for single 

particle excitations corresponding to spin a 
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and for spin waves 
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Now by applying the self consistent many body theory (A.J.Fedro and R.S. 
Wilson, 1975), one obtains a matriz Dyson equation for the fourier 
transform of the Green's function (10) as 
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where I is the unit matrix, and the matrix elements of A and Bt (w) are 
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where n = -O for the single particle excitation and n = -1 for the spin 

waves. The Liouville operator 1 and the projection operator P are 

defined according to 
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The Dyson equation (13) can Se used to obtain the single 

particle excitations and the spin waves. For spin waves, it is possible 

to solve it exactly for the stiffness constant. It gives the same results 

as already obtained by the author (R.Kishore, 1979) without using SBO.For 

single particle excitations, it is necessary to make approximations. If 
aO 

we assume )(k ( 03) - O, the results of two poles approximation of Roth 
(L.M.Roth, 1969) are recovered. It is found that when one obtains 

correlation functions from the Green's functions, the Roth's approximation 

does not satisfay the multiplication rules (6). This difficulty can Se 

removed if we assume that 
Yc(I3 

(w) are approximated in such a way that 

(a1)=0 for O 6 and yg" (w) = 0 for a 	C. Within this approximation, 

our results reduce to that of Ikeda et al (1972). Recently, Ikeda et 81(1972) 

theory has been applied to the dopped semiconductors to calculate the 

specific heat (A. Ferreira da Silva et ai). It gives a very good agreement 

with the experiment. 
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