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MEMORY FUNCTION FORMALISM APPLIED TO ELECTRONIC TRANSPORT IN DISORDERED 

SYSTEMS 

I.C. da CUNHA LIMA 

Instituto de Pesquisas Espaciais - CNPq, 12200 São José dos Campos, SP, 

Brasil 

Memory function formalism is briefly reviewed and applied 

to electronic transport using the projection operator technique. The 

resistivity of a disordered 2-D electron gas under strong magnetic 

field is obtained in terms of the force-force correlation function. 

Memory functions have been extensiveley studied in the past in 

relation with hydrodynamical processes /1/. During the last decade 

their use lias been extended to electronic transport properties in 

disordered materiais /2/ and more recently to the interesting problem 

of conduction of disordered 2-0 system /3,4/. The fact that they play 

the role of a self-energy of a many-particle propagator, and therofore 

the resonance structure is already built in, makes their expansion in a 

small parameter-like impurity concentration valid for ali range of 

frequencies. In this paper we will review their difinitions and apply 

the formalism to the case of 2-D electron gas under a strong magnetic 

field. 

The linear response theory establishes that the dynamics of 

spontaneous fluctuations about the equilibrium can be de scribed in terms 

of correlation functions. Let's consider a quantity m(t,t) obeying the 

conservation equation. 



m(7,+) + V x 1(7,0 . O. 	 (1) 

at 

The above equation relating density and current isnot enough to solve 

for mcitit). We need a second equation that establishes that the current 

will flow from regions of higher to lower density. This is the so cal led 

constitutive equation 

1(7,t) > 	-D ; <  m(7,t) >. 	 (2) 

Here D is the diffusion coefficient. The average <> isanon-equilibrium 

average to be properly defined. 

We know that at thermal equilibrium < m(,t) > = constant, 

-t 
< j(r,t) >

eq 
= O. The conservation equation and the constitutive 

equation togetherlead to the diffusion equation 

9 m(;-, t) > -D v 2  < m(it, t) > = o 	 (3) 
at 

valid only if the property m(7,t) varies slowly in space and time. It 

can be solved by Laplace transforming in time and Forier transforming 

in space to yield 

< m(k,z) > = i(z • iDk 2 ) -1  < m(t,t = O) > 	 (4) 

ar 

< m(t ,z) 	= 
e-Dk2t  < m(t,t = O) >. 	 (5) 

The pole at -iDk2  characterise a hydrodynamic mode corresponding to a 

lifetime t(k) = (Dk2 ) -1 . 

At this point let's define the autocorrelation function 



	

S(,t) = < m(,t) m0',0) >
eq 	

(6) 

it is well defined as a thermal equilibrium average. Its Laplace 

transform 

t 	t 
dt j d; eizt 	

• 

e ' -I  ' 	S(r,t) 	Imz> O 	(7) 
o 

and its Fourier transform (spectral density) 

• 
i t -ik r 	t 

= j" 	 I°  dt j 	d; e 	e 	' S(r,t) 	 (8) 

are related by 

. 	1 	
doi 

 S(Itw) 	
(9) 

2ui lw 	w-z 

If we assume that the constitutive equation is valid in an operational 

sense, i.e., even if we omit < >
non-eq

, we obtain 

[â
t 

- D 7 2 ] S(,t) = O 	 (10) 

as proposed by Onsager in 1931. Then 

= i(z 	iDk2 ) -1  S(t,t = O). 	 (11) 

The constitutive equation can befurther improved to include 

causality: 

< 1(r,t) >= -
t 

dt , 6(t-t') 	c m (7,t , ) > 	(12) 
o 

Or 

+ 	 -> 
< J(r,t) > = - f

t 
dt'j d7' D(-', t-t') ;' < m(r 1 ,t 1 ) >. (13) 

o 

In these cases D is called a memory function. 



In 1972 Gatze and ~fie /2/ applied their holomorphic memory 

function to obtain the homogeneous dynamical conductivity of metais, 

iw 2  
ie2  

0(z) = - 	x(z) + ---2— 	 (14) 
411z 

where w is the plasma frequency (w 2  = 4me 2 N/m) and x(z) is the current-

-current correlation function: 

izt 
6 	x(z) E - << 1 	. >> = 	j e 	< [j (t) , j.(0)] > dt, 	(15) xy 	 j 	z 

Since the conductivity has to remain finite in the limit of w going to 

zero, 

x = w2 /4me 2  = N/m 	 (16) 
o 	p 

and 

ie2  
0(z) 	 (X (z) - x0 ). 	 (17) 

Defining a holomorphic relaxation function 

	

M(z) = zx(z) /[xo  - x(z)] 	 (18) 

then, 

0(z) 	i 	w2 	1 	. 
(19) 

	

4u 	P z + M(z) 

M(z) works like a self-energy of the two particle propagator 

that appears in o(z). 

For vanishing impurity concentrations the total current 	is a 

constant of motion. In this case x(z) and M(z) vanish. Assuming a 

regular dependence of M on the concentration n i , then 



n . 
1 

M( 2 ) = 	[0(2) - 	= O)), 	 (20) 
zx 

o 

where 0(z) is the force-force correlation function. This result 

reproduces Drude's model (w + O) 

iNe2  
a(w)  (w + et 	 (21) 

IR 

Transport properties of 2-D electron gas has atracted much 

attention during the last years, both due to the interest on localization 

in 2-D and to the discover of the quantum Hall effect and the surprise 

of the anomalous quantized Hall effect. Among the extensive arsenal 

used, memory function formelism has not been put aside. So, Shiwa and 

Islhara /4/ and Ying and da Cunha Lima /3/ have studied the transport 

properties of a 2-D electron systems under strong magnetic field using 

a memory function-projection operator technique. The experimentally 

measured quantities are p 	and p. It is not clear if the inversion 
xx 	xy 

of the conductivity tensor a, which has been averaged over ali impurity 

configurations, yields the appropriate quantity for comparison with 

experiments. So, we aim directly to the calculation of the resistivity 

first and then perform the impurity average. 

Let us start with the Hamiltanian for an electron gas under an 

externai field, given by the vector potential A and in the presence of 

impurities with scattering potential given by the Fourier transform 

H=1 	[;. 4- -2— A(-É.)]2 4- y v(-É. - -É.) 4, 	
1 	u( q÷) 	i ci- (;J - 1 ),  1 	 i 	, 

i 2m 	I 	c 	 i>j 	
ci,J,1 	e 

(22) 

4- 
where R

1 
denotes impurities positions. 



Next we transform this Hamiltonian into center of mass (CM) 

and relative coordinates 

	

. 1 	o- 1.  Ne zu-012 	H e.  iqx(r. - R ) Iqx  (q) e 	 e . 	(23) 

2M 	c 	 qjl 

We have used respectively N and M to denote the number (density) of 

electrons and the total mass, M = Nm. -11-  and R are the momentum and the 

position of the CM. H r  contains only relative coordinates. Using Kubo's 

expression for the conductivity (conductance) tensor, we have (a,0= x,y) 

	

i 	e 	+= . 	iwt 

	

%H M = -
I
--- 
 Ne  

-6(03 + — 	jdt e 	Ote0 (t), 	(24) 

w m 	w 	m 

where 

= (0(t) < 	( Tr a (t), . B (0)) >, 	 (25) 

with ir 
x 

= iR/âx and ir = -i 	+ Mw
c
X. We have used the gauge 

X(I)= (O, HX, O). wc  is the cyclotron frequency, w c  = eH/mc. 

Defining the Laplace transform 

	

(z) 	. e 'zt e  
[2
a
(t), z

0 
 (0)1 > dt, 

Aa0 	
im z > O, 	(26) 

the conductivity becomes 

	

a0 
 (z) 	

iNez 	 iez  - 	Xa0
(z). 	 (27) 6

a0 
 

	

mz 	 m2 z  

We define the momentum-momentum correlation function 

	

C 6 (t) = < ,(t)In (0) > 	 (28) 
a 	7 

using the following definition of the scalar product 



	

< AIS > = 0 -1 	dX < A 	>, 	 (29) 
o 

Using the fluctuation-dissipation theorem the Laplace transform C 8 (z) 

is related with x
aS

(z) according to 

Xa0
(z) = iBZ C

GB
(z) + x 

a
(0) 	 (O E O -V I0 -1- ). 	(30) 

	

& 	' 

Using the fact that a remanis finite as 

Xa0 E Xa0
(0) = Nm 	 (31)

aS  

and 

t z \ 	e2 0 	(z1 	 (32) 
aS' I 	 11  m2 

At this point we invert a to obtain the resistivity tensor 

ae
(z) = —22L— c -1 (z). 	 (33) 

aS 
e2 6 

The correlation functionisnow solved by means of the memory function-

-projection operator technique. Let's define 

=ïina  > 0)(20  < 7 0  I 	 (34) 

as 

and 4= 1 - P. Then C 5 (z) obeys the equation /1/ 

[z I - 	+ i 1(z)3 C(z) = 	X. 	 (35) 

where 

= wx-1 , wae  = IS < wa l 1 0  > = < 	wo] >, 	 (36) 

	

1(z) = S(z) x -1 , Sae (z) = s< na 	Q 	 1f f  > . 	(37) 
z-Q1Q 



L is the Liuville L t = [H, T]. As a consequence, 

o(z) = - 	(zI - a + M(z)), 	 (38) 
Ne2  

with M(z) = l(f)• In the absence of magnetic field 2 is zero and M(z) 

is diagonal. The above expression becomes the reciproca] of the GOtze 

and WIOlfles conductivity. 

With the Hamiltonian given by Eq. (23) we obtain 

1 
-iNw 	

o 
c (

-1 O ). 	 (39) 

It does not contribute to the longitudinal resistivity. The off-diagonal 

elements immediately generate the term mw z/ne2  in the transverse 

resistivity. Expanding the operator (z - 	we obtain for the memory- 

-function 

(.1  (z) 	idu_l jop < u 	e-itaL 	_izt dt,  
(40) 

aB 	 o a 	 13 ` 

where -U
a 

is the component a of the generalized force acting on the CM 

due to impurity scattering, i.e., 

	

_ 30 
Ua 
= — = 2 iq

a 
e ti 	U(q) p(q) 	 (41) 

3I2
a 	Z,1 

. 	e icixrj 
and p(Z) is the electron density p(Z) 

At this point we assume that the dynamics of the general ized 

force is governed by the full Liouville operator 

itL 
e it" 	U 

5 	e 	u 	= I u (t) >. 	(42) I 
a 	 a 	a 

In this case 



i f) 
M(z ) 	---- 1 < U (t) U

s 
> e izt  dt. 	 (49) 

Um 	° 

Defining the (retarded) force-force correlation function according to 

R 
nao (w) 	i 1 	0(t) < [U (t), U (0)] > e iwt  dt 	 (44) 

a 	8 

we obtain 

M (w + 101 	- —1— [wR  (w) -nR  (0)] 	 (45) 

	

a0 	 a$ 	a0 	'  
Nmw 

that is nothing but GW's expression in a matrix form. 

For low impurity concentration a standard approach to the 

configurational average leads to 

n
R 

(w) = n•q qU2 (q) 3- (q,w), 	 (46) 

	

a0 	1 	a 

where S(q,w) is the retarded density-density correlation function 

S(Z,w) 	i j" 0(t) < [P( -4,t), p(-;.0)1 > e ildt  dt. 	(47) 
-o 

Collecting those equations together, we have for the resistivity 

// 	
i 

(2
XX

k11W') 1 	- 
	 — [11

XX
(W)

'XX
(O], 	(48) 

Ne2 	n2e2 

MU1 

	

P (W ) = 	+ 	 -1-  [1T (Ui) - 	(0) ] 
xx 	 xy 	

(49) 

Ne 2 	N2e2 	w 

What is left at this pont is to calculate the average density-

-density correlation function and perform the summation on the wave 

vector in Eq (46). Many processes can be used. One is to use the memory 



function formalism repeatedly. Another possibility is to perform a 

diagrammatic pertubative expansion on Sr,,). In the present case of 

strong magnetic field, Landau quasi-particle Green's functions in 

the self-consistent Bom n approximation form a convenient basis to 

express the one-particle propagator. In fact, current-current diagrams 

have been worked out by Houghton et al. /5/ and a great effort can be 

sayed in the present case by using many of their results. 

An important test for the present theory consists in trying to 

recorver Drude's result when we make the limit of H going to zero. In 

another work presented in this Symposium it is shown that the lowest 

order diagram is enough to reproduce Drude's formula. 
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FIGURE CAPTIONS 

Fig. 1 - Diagram for Tii:0(12). 




