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SEARCHING FOR ORBITS AROUND EQUILIBRIUM POINTS IN A 
BINARY ASTEROID SYSTEM MODELED AS A MASS DIPOLE 

Santos, L. B. T.,1 Sousa-Silva, P. A.,2 Sanchez, D. M.,3 Prado, A. F. B. 
A 4 

The objective of the present work is to search for orbits around the equilibrium 

points L1 and L2 of the restricted three-body synchronous problem (RTBSP). 

From the equations of motion of a binary system of asteroids, where one of the 

asteroids is modeled as a rotating mass dipole, it was possible to determine the 

initial conditions for Lyapunov orbits. The study was carried out by modifying 

the mass ratio of the system and the size of the dipole mass in rotation. By 

linearizing the equations of motion, it is possible to obtain the eigenvectors and 

eigenvalues, and with these values, it was possible to determine the initial 

estimates to find periodic orbits around the equilibrium points using Newton's 

method. Then a family of orbits was built around the equilibrium points L1 and 

L2. 

INTRODUCTION 

The interest in analyzing, investigating and understanding the dynamics of a satellite around 

the equilibrium points has grown in recent years, due to the advantages that these points offer 

when it comes to space missions1. Several space missions near the collinear equilibrium points 

have been completed, are in execution or are being prepared for the near future2-4. The ISEE-3 

was released in 1978 and inserted a spacecraft into a periodic orbit in the vicinity of the 

equilibrium point L1 of the Sun-Earth system with the objective of making studies of the Earth-

Sun interactions5, 6. This was the first artificial object to be sent to an equilibrium point. Its main 

mission was to investigate the structure of the solar wind in the vicinity of the Earth, among 

others1, 3. Since then, several space agencies have considered periodic or quasi-periodic orbits 

around the libration points as target-orbits for their spacecraft, as used with the satellites 

SOHO7, MAP, ACE, Genesis, among others, and there are several future projects that intend to 

use orbits around equilibrium points to develop their missions, such as NGST, Herschel-Planck, 

James Webb Space Telescope, that will succeed of Hubble Space Telescope and that has the 

intention of orbiting the equilibrium point L2 of the Sun-Earth system1, 8, 9. From the twentieth 

century, several researches have contributed to a better understanding of the CRTBP, but the 

action of several disturbing forces were not taken into account in many of these problems. The 

classical model does not consider some of the disturbing forces, such as the irregular shape of 

one of the primary bodies, the Poynting-Robertson drag effects, the solar radiation pressure, and 

the mass ratio variations of the primaries. Some of the expressive works in the CRTBP were 

produced by references10-15.  

                                                           

1 PhD Student, Division of Space Mechanics and Control, National Institute for Space Research - INPE, Astronautas 

Avenue 1758, São José dos Campos-SP, Brazil, 12227-010. 
2 Professor, Department of Mathematics, São Paulo State University - UNESP, São João da Boa Vista – SP 
3 Post-doctoral Fellow, Division of Space Mechanics and Control, National Institute for Space Research - INPE, 

12227-010 São José dos Campos, Brazil 
4 President of the Board of the Graduate School at INPE in Brazil, National Institute for Space Research - INPE, 

12227-010 São José dos Campos, Brazil 

(Preprint) AAS 18-262 



2 
 

To perform this study, we used a model based on rotating dipole mass, first introduced by 

Chermnykh (1987)16. Kokoriev and Kirpichnikov (1998)17, 18 were also one of the pioneers to 

use this model. It is considered in this model that the gravitational field of two bodies of point 

masses located on the axis of symmetry of an asteroid closely approximates the gravitational 

field of an axially symmetrical body. In this work, one of the bodies of the asteroid binary 

system is modeled as a rotating mass dipole, representing in this way as an elongate body. 

This model used in asteroid was developed by Zeng et al. (2015)19. In the work of Ferrari et 

al. (2016)20, a way of finding trajectories in the vicinity of a binary system, using the dipole 

model in one of the asteroids (Zeng et al., 2016e)21, was analyzed. Ferrari (2016)20 also analyzed 

these trajectories and studied the effects of the flyby using an analytical approach and finding an 

important relation between the flyby and the integral of Jacobi. Santos, Prado and Sanchez 

(2017)22 analyzed the restricted problem of three bodies using the rotating mass dipole model, in 

which was investigated the behavior of the equilibrium points when the mass ratio of the system 

and the dipole dimension are modified. An interesting relation was found between the linear 

stability of the equilibrium points as a function of the dipole dimension. Santos, Prado and 

Sanchez (2017)23  also analyzed the behavior of the collinear equilibrium points when the two 

primary bodies are considered as a mass dipole in synchronous rotation. Santos, Prado and 

Sanchez (2017)24 investigated the lifetime of a spacecraft that orbits an asteroid binary system in 

which one of these bodies is modeled as a rotating mass dipole. Numerical evidence has shown 

that retrograde orbits around this type of system survive longer than direct orbits. 

In this work, we intend to find planar Lyapunov orbits around the equilibrium points L1 and 

L2 around a binary asteroid system, where the more massive asteroid is modeled as a mass 

point, and the other one is modeled as a rotating mass dipole. After finding the Lyapunov orbits, 

we intend to obtain families of orbits around these equilibrium points. Analyzes will be 

performed using analytical and numerical methods. For the analytical study, the linearization of 

the equations of motion will be performed, and from there, the necessary initial guess will be 

obtained, to find the Lyapunov orbits around the libration point. Once the initial guesses are 

found, it will be possible, through iterative numerical methods, to find a solution of the non-

linearized problem. 

EQUATION OF MOTION 

 

In this study, we developed the equation of motion of a body with infinitesimal mass, when 

attracted by the gravitational forces of two massive bodies (M1 e M2), where the smallest 

primary is modeled as a rotating mass dipole. In this analysis, we consider that the rotational 

period of the less massive body (M2) around its axis is equal to its period of translation around 

the center of mass of the system, making the movement to be synchronous. The unit of distance 

was chosen to be the distance from the center of mass of the body M1 to the center of mass of 

the body M2, where the latter is formed by two hypothetical bodies with masses m21 and m22, 

according to Figure 1.  
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Figure 1. Image of the geometric shape of the system analyzed. Figure taken from22. 

 
By taking convenient units of mass, time and length (canonical units), it is possible to 

simplify the equations of motion. Every equation is developed in the x-y plane, when viewed 

from a synodical reference system, where the origin is defined as the mass center of the system. 

In this rotating system, the primary with larger mass (M1) has mass m1 = 1-2µ∗ and it is always 

located at 𝑥1 = (-2µ∗, 0).  The masses of the two hypothetical bodies that form the body M2 are 

m21 = m22 = µ∗, and they are located in the 𝑥21 = (-2µ∗+ 1−d/2, 0) and 𝑥22 = (-2µ∗+ 1 + d/2, 0), 

respectively, where d is the distance between the bodies m21 and m22. After making some 

mathematical simplifications, using the canonical units mentioned above, it is possible to find 

the Hamiltonian function, which is given by: 

𝐻 =
(𝑝𝑥 + 𝑦)2 + (𝑝𝑦 + 𝑥)

2

2
−

𝑥2 + 𝑦2

2
−

1 − 2µ∗

𝑟1

−
µ∗

𝑟21

−
µ∗

𝑟22

, 

 

(1) 

where 

𝑟1 = √(𝑥 + 𝑥1)2 + 𝑦2, 

 

(2) 

𝑟21 = √(𝑥 + 𝑥21)2 + 𝑦2, 

 

(3) 

𝑟22 = √(𝑥 + 𝑥22)2 + 𝑦2, 

 

(4) 

 

and 𝑝𝑥 is the angular momentum of the particle relative to the axis x and 𝑝𝑦 is the angular 

momentum of the particle relative to the axis y. From the Hamiltonian function, it is possible to 

determine the equations of motion of an infinitesimal mass particle when viewed from a rotating 

reference system, which is given by  

 

𝑥̇ =
𝜕𝐻

𝜕𝑝𝑥
= 𝑝𝑥 + 𝑦, (5) 
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𝑦̇ =
𝜕𝐻

𝜕𝑝𝑦
= 𝑝𝑦 − 𝑥. (6) 

The remaining dynamical equations are 

𝑝̇𝑥 =
−𝜕𝐻

𝜕𝑥
= 𝑝𝑦 − 𝑥 + 𝛺𝑥, (7) 

𝑝̇𝑦 =
−𝜕𝐻

𝜕𝑦
= −𝑝𝑥 − 𝑦 + 𝛺𝑦, (8) 

  

where 𝛺𝑥, 𝛺𝑦 are the partial derivatives of 𝛺 with respect to x and y, respectively25, where 

 

𝛺 =
𝑥2+𝑦2

2
+

1−2µ∗

𝑟1
+

µ∗

𝑟21
+

µ∗

𝑟22
· (9) 

 

From the Lagrangian formulation it is possible to write the equations of motion. To do this, it is 

necessary to make the transformation 𝑥̇ = 𝑝𝑥 + 𝑦, 𝑦̇ = 𝑝𝑦 − 𝑥, where 𝑥̇ and 𝑦̇ are the velocities 

of the particle as seen from a rotating reference system. In this way, the equations of motion can 

be written as follows: 

𝑥̈ − 2𝑦̇ = 𝛺𝑥 (10) 

𝑦̈ + 2𝑥̇ = 𝛺𝑦 (11) 

Equations (10) and (11) have the same appearance of the equation of motion of the restricted 

classical three-body problem, that has been extensively studied in the scientific community26, 27.  

The is also a constant in this problem, which is the Jacobian integral24. It is given by 

𝑣2 = 2𝛺 − 𝐶∗, (12) 

where 𝐶∗
 is a modified integral constant, analyzed in reference22. 

It is noteworthy that Equation (12) is a function which is dependent on 𝛺 and an integration 

constant 𝐶∗
, which is an integral of the equations of motion28, 29. In this study, it is assumed that 

the body with negligible mass is moving in the x-y plane. Then Eq. (12) shows that, for a given 

value of 𝐶∗
, the velocity is a function that depends on the position of the body in the plane of 

motion. The integration constant 𝐶∗
 is dependent on the initial position and velocity of the 

particle27. We can see that Eq. (12) relates the square of the velocity to the coordinates of the 

body with negligible mass in the rotating coordinate system29. Therefore, when determining the 

integration constant 𝐶∗
 numerically from the initial conditions, by Eq. (12) it is possible to 

determine the velocity of the particle with negligible mass at all points in space. Conversely, for 

a given velocity, from Eq. (12) it is possible to determine the geometric shape at the locations 

where the movement of the spacecraft is allowed. In particular, if we define velocity as zero in 

Eq. (12), it is possible to find a region where the velocity of the particle is zero30. In 

mathematical terms, these zero velocity curves are defined by 2 𝛺 - 𝐶∗
 = 025. Writing this in 

Cartesian coordinates, we obtain Eq. (13): 
𝑥2 + 𝑦2

2
+

1 − 2µ∗

𝑟1

+
µ∗

𝑟21

+
µ∗

𝑟22

=  𝐶∗ (13) 

The motion of the spacecraft is only possible in regions where 2 𝛺 > C, otherwise, the square of 

the velocity needs to be negative, which is impossible from a physical analyses22. 

Although similar, the equations of motion developed in this work differs from the ones of the 

Restricted Classic Three-Body Problem by the pseudo-potential used in the Equations (10-11). 

The equilibrium solutions with respect to the rotating system occur when the partial derivative 

of the pseudo-potential function is equal to zero, that is, 𝛺𝑥 = 𝛺𝑦 = 0, and 𝑥̇ and 𝑦̇ = 0. These 

solutions are known as equilibrium points corresponding to fixed positions in the rotating 

system, where there is a balance between the gravitational and the centrifugal forces that is 
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associated with the rotation of the system. These equilibrium solutions makes a particle 

positioned at one of these points to appear stationary in the rotating system31. 

The differential correction method, based on Newton's method, is a powerful tool, which uses 

the State Transition Matrix (STM) to solve several boundary value problems. The equations of 

motion studied here have anti-symmetric terms due to the Coriolis acceleration coming from the 

rotating system. These terms would first to remove any symmetry in the problem. Although not 

trivial, it is possible to note that the RTBSP has symmetry. The geometry of the configuration 

space is undoubtedly symmetrical with respect to the rotating system on the x-axis. 

Furthermore, the collinear equilibrium points are on the x-axis and the equilateral equilibrium 

points are symmetrical with respect to the x-axis. We can note that the potential function for the 

system studied here depends only on the distances that a spacecraft are from the primary bodies, 

that is, it has symmetry with respect to the x-axis. Taking advantage of the fact that the planar 

Lyapunov orbits are symmetrical with respect to the x-axis, the initial state vector takes the form  

𝑿0 = [𝑥0, 0, 0, 𝑣𝑦0
] T. 

These symmetries were used to find symmetric periodic orbits. This is done by determining the 

initial conditions, on the x-axis, where the initial velocity is perpendicular to this axis (𝑣𝑦), and 

then the integration is done until the path returns by crossing the x-axis with the speed 

orientation 𝑣𝑦𝑓
 opposite to the initial condition. This orbit can be used as an initial guess to use 

Newton's method, where the target state is quoted above; that is, that the orbit returns to x-axis 

with normal velocity. The equations of motion and the State Transition Matrix are incorporated 

numerically until the trajectory crosses the x-axis again. The final desired condition has the 

following form 

𝑿𝑓 = [𝑥𝑓, 0, 0, 𝑣𝑦𝑓
] T. 

RESULTS  

The initial conditions obtained for the system under study, using the mass ratio of µ∗ = 

0.005284 for the classical case, d = 0, using the differential correction are: 

 

i) For the Lyapunov orbit around L1, when the dipole dimension is zero, is 

 

𝑋0𝐿1 = [

0.89696483
0
0

−0.3370635541809143

] 

with a time period of 3.083 canonical unit. 

 

ii)  For the Lyapunov orbit around L2, when the dipole dimension is zero, is 

 

𝑋0𝐿2 = [

1.18638324
0
0

−0.2609113622544423

] 

 

with a time period of 3.54 canonical unit. 

 

The Lyapunov orbits around L1 and L2 are shown in Figures 2 and 3, in red and green, 

respectively. 
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Figure 2. Lyapunov orbit around L1 (red) and L2 (green). The body M2 plotted in black. 

 

 

Figure 3. The primary bodies plotted with black dots and the Lyapunov orbit around L1 (red) and 

L2 (green). 

 

Lyapunov orbits with the addition of the dimensions of dipole. 
 

Some numerical results were obtained for a non zero dimension of the dipole and µ∗ = 

0.005284. Several values of dimension d of M2 were assumed, modifying the dimension of the 

rotating mass dipole from 0 to 500 meters, every 100 meters. The purpose of this variation is to 

understand how the dimension of the dipole influences the Lyapunov orbits near M2, that is, 

around the equilibrium points L1 and L2. 

The results shown here were obtained for 𝐶∗= 3.10, for which the necks around L1 and L2 are 

opened. With the correct initial conditions, it was possible to find Lyapunov orbits around the 

equilibrium points L1 (red) and L2 (green), as shown in Figure 4.  
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Figure 4: Lyapunov orbits around equilibrium points L1 (red) and L2 (green). 

Figure 3 shows that, as we increase the dipole dimension, the Lyapunov orbits become more 

deformed, with a kidney-like shape. Note that the dipole dimension practically does not change 

the amplitude of the Lyapunov orbit. In the left Figure the dipole dimension is zero, that is, the 

body M2 becomes a mass point. In the middle figure the dipole dimension is 300 meters, and, 

finally, in the figure on the right side, the dipole dimension is 500 meters. 

Figure 5 a) shows the Lyapunov orbits around points L1 and L2. The caption on the upper 

right side relates the dimension of the dipole (in meters) with the color of the orbit. When 

Lyapunov's orbit is green, for example, this implies that the dimension of the dipole is 500 

meters. Figure 5 b) is a zoom of the Lyapunov orbit around L1 which is closest to the dipole. We 

can verify through Figure 5 b) that, as we increase the dimension of the dipole, the orbit 

becomes more deformed. 

  

a) Lyapunov orbit considering the Jacobi constant 

of 𝐶∗ = 3.10. 

b) Zoom around the Lyapunov orbit 

around L1 (of Figure a) which is 

closest to the dipole. 

Figure 5. Lyapunov orbit around the equilibrium points L1 and L2 for various dipole dimensions. 

Although the dimension of the dipole does not affect the amplitude of the orbit considerably, 

it influences the period of the orbit. As the dipole size increases, for 𝐶∗ = 3.10, the orbital period 

of the Lyapunov orbit around the equilibrium point L1 and L2 decreases, as shown in Figure 6 a) 

and b), respectively. 
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a) Period of the Lyapunov orbit as a 

function of the dipole dimension for the 

equilibrium point L1 using the Jacobi 

constant 𝐶∗ = 3.10. 

b) Period of the Lyapunov orbit as a 

function of the dipole dimension for the 

equilibrium point L2 using the Jacobi 

constant 𝐶∗ = 3.10. 

Figure 6. Period of the Lyapunov orbit as a function of the dimension of the dipole. 

 

We note that the amplitude of the Lyapunov orbit around L1 is smaller with respect to the 

amplitude around L2, which makes its period to be smaller, due to the fact that the spacecraft 

describes a smaller trajectory. 

The curve fit was made in order to find an analytical expression relating the period of the 

Lyapunov orbits to the dipole dimension, for 𝐶∗ = 3.10. The analytical expression found from 

the curve fitting for the orbital period as a function of the dipole dimension around the 

equilibrium points L1 and L2 was a third degree polynomial, as shown in Equations (14) and 

(15), respectively 

𝑇𝐿1
3,10 =  5.52 × 10−10𝑑3 − 1.21 × 10−6𝑑2 + 1.21 × 10−5𝑑 + 3.08   (14) 

𝑇𝐿2
3,10 =  4.54 × 10−10𝑑3 − 1.27 × 10−6𝑑2 + 1.53 × 10−5𝑑 + 3.54   (15) 

in which the upper and lower subscript of the period T indicates the Jacobi constant used for this 

expression and the related equilibrium point, respectively.  

Figures 7 and 8 show the Zero Velocity Curves (ZVC), a Lyapunov orbit (blue) around the 

equilibrium points L1 and L2, respectively, the most massive primary modeled as a mass point 

(red asterisk), the less massive primary modeled as a mass dipole rotation (black asterisk) and 

the positions of the equilibrium points (circles). The Jacobi constants corresponding to these 

figures is 𝐶∗ = 3.10, for which the necks around L1 and L2 are open. The dipole dimension of 

500 meters and a mass ratio of µ∗ = 0.005284 were used to obtain these figures, 
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Figure 7. Lyapunov orbit around L1 equilibrium point and zero velocity curve. Jacobi constant 

𝑪∗= 3.10. 

 

Figure 8. Lyapunov orbit around L2 equilibrium point and zero velocity curve. Jacobi constant 

𝑪∗= 3.10. 

From the Lyapunov orbits found, using a continuation strategy, it was possible to find 

families of orbits around the equilibrium points under study. These families of Lyapunov orbits 

are shown in Figures 9 and 10. The software used was based on the one developed by J.D. 

Mireles James, with some modifications made to suit the system under study 32, 33. A family of 

orbits was constructed around the equilibrium points L1 and L2, as shown in Figures 8 and 9, 

respectively.  
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Figure 9. Family of Lyapunov orbits around L1 equilibrium point. 

 

It can be seen, from Figures 9 and 10, that, as we increase the amplitude of the Lyapunov 

orbits, they approach the less massive primary body, making the orbits to become more and 

more deformed, assuming a kidney shape. If the elongated form of the less massive primary was 

not taken into account, these orbits would be less deformed, and the infinitesimal mass particle 

would follow another trajectory.  

The black asterisks, near the equilibrium points L1 and L2, are the bodies of masses m21 and 

m22, respectively, that form the mass dipole. The circles are the positions of the equilibrium 

points L1 (left side) and L2 (right side). 

 

 

 

Figure 10. Family of Lyapunov orbits  around equilibrium point L2 

 

By decreasing the Jacobi's constant to 𝐶∗ = 3.01, the forbidden regions decrease, thereby 

increasing the regions where the motion of the spacecraft is allowed. The results shown here 
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were obtained using 𝐶∗ = 3.01, which allows the neck at L1 and L2 to be opened. With the 

correct initial conditions, it was possible to find Lyapunov orbits around the equilibrium points 

L1 and L2, as shown in Figure 11.  

   

Figure 11. Lyapunov orbits around equilibrium points L1 (left) and L2 (right). 

 

We note that, when the Jacobi's constant decreases, there is an increase in energy, causing 

the orbit's amplitude to increase with respect to the previous figures. 

We can see, from Figure 12, that, as we increase the dipole dimension, the Lyapunov orbits 

become more deformed. Note that the dipole dimension practically does not change the 

amplitude of the Lyapunov orbit. In the left plot the dipole dimension is zero, that is, the body 

M2 becomes a mass point. In the middle plot the dipole dimension is 300 meters and, finally, in 

the plot on the right side the dipole dimension is 500 meters. 

  

a) Lyapunov Orbit considering 𝐶∗ = 3.01. b) Zoom of the closest to the dipole 

Lyapunov orbit around L1 (Figure a). 

Figure 12. Lyapunov orbit around equilibrium points L1 (left) and L2 (right). 

 

Figure 12 a) shows the Lyapunov orbits around points L1 and L2 with the Jacobi constant 𝐶∗ 

= 3.01. The caption on the upper right side relates the dimension of the dipole (in meters) with 

the color of the orbit. When the Lyapunov orbit is pink, for example, this implies that the 

dimension of the dipole is 400 meters. Figure b) is a zoom around the Lyapunov orbit around 

L1. We verify that, as we increase the dimension of the dipole, the orbit becomes more 

deformed. 
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In order to understand how the amplitude of these orbits behaves as a function of the dipole 

size, the upper region of the orbits around the equilibrium point L2 was zoomed and shown in 

Figure 13. 

 

 

Figure 13. Amplitude of the Lyapunov orbits considering the Jacobi constant 𝑪∗
 = 3.01 

We can see that the amplitude of the orbit differs very little as we change the dipole 

dimension. The amplitude of the variation of the system under study is 0.004967 canonical 

units, which is equivalent to 18.89 meters. 

Notice that, for this case, the period of the orbit becomes larger as we increase the dipole 

dimension. This is due to the fact that, when the energy of the spacecraft increases, the orbit 

becomes increasingly deformed as we increase the dipole dimension. As the orbit becomes more 

deformed, the path traveled by the spacecraft becomes larger, increasing its the orbital period. 

Although when the spacecraft is near the dipole the acceleration is larger, because the 

gravitational field is more intense, the deviation that the spacecraft suffers is considerable, 

making the time to complete a period to be relevant. This can be observed by looking at the 

Figures 14 a) and 14 b). 

  

a) Period of the Lyapunov orbit as a 

function of the dipole dimension for the 

equilibrium point L1 using the Jacobi 

constant 𝐶∗ = 3.01. 

b) Period of the Lyapunov orbit as a 

function of the dipole dimension for the 

equilibrium point L2 using the Jacobi 

constant 𝐶∗ = 3.01. 

Figure 14. Period of the Lyapunov orbits as a function of the dimension of the dipole. 

The period of the orbit around L2 is larger because its amplitude is larger with respect to the 

Lyapunov orbit around L1. The curve fit was made in order to find an analytical expression 

relating the period of the Lyapunov orbits to the dipole dimension, for 𝐶∗ = 3.01. The analytical 

expression found from the curve fitting for the orbital period as a function of the dipole 
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dimension around the equilibrium points L1 and L2 was a fourth degree polynomial, as shown in 

Equations (16) and (17), respectively 

 

𝑇𝐿1
3,01 =  3.33 × 10−12𝑑4 − 4.78 × 10−9𝑑3 + 1.96 × 10−6𝑑2 − 4.45 × 10−6𝑑 + 4.16   (16) 

𝑇𝐿2
3,01 =  7.92 × 10−12𝑑4 − 1.04 × 10−8𝑑3 + 4.13 × 10−6𝑑2 + 6.93 × 10−5𝑑 + 4.38 (17) 

in which the upper and lower subscript of the period T indicates the Jacobi constant used for this 

expression and the related equilibrium point, respectively. 

Figures 14 and 15 show the Zero Velocity Curves (ZVC) when the  dipole dimension is 500 

meters and the mass ratio of the system is µ∗ = 0.005284. Figure 14 and 15 show  the Lyapunov 

orbit (blue) around the equilibrium points L1 and L2, respectively, the most massive primary (red 

asterisk), the less massive primary (black asterisk) and the positions of the equilibrium points 

(circles). The Jacobi constant related to these figures is 𝐶∗ = 3.01, where it is possible to allow 

the neck at L1 and L2 to be opened.  

Due to the decrease of the Jacobi constant with respect to the previous cases (Figures 6 and 7), 

the energy of the system is increased, making forbidden areas where the movement is prohibited 

to become smaller, as we can see in Figures 15 and 16. 

 

Figure 15. Lyapunov orbits around L1 equilibrium points and zero velocity curves. Jacobi constant 

𝑪∗= 3.01 
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Figure 16. Lyapunov orbits around L2 equilibrium points and zero velocity curves. Jacobi constant 

𝑪∗= 3.01 

 

From the Lyapunov orbits found, using a continuation strategy, it was possible to find 

families of orbits around the equilibrium points. These families of  Lyapunov orbits are shown 

in Figures 17 and 18. A family of orbits was constructed around the equilibrium points L1 and 

L2, as shown in Figures 17 and 18, respectively.  

 

 

Figure 17. Family of Lyapunov orbits  around equilibrium point L1. 
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Figure 18. Family of Lyapunov orbits  around equilibrium point L2. 

 

This analysis was performed for 𝐶∗ = 3.01 because there is the possibility of finding natural 

orbits that connect the families of orbits around L1 with families of orbits around L2. Due to the 

symmetry of the Lyapunov orbits with respect to the y axis, we intend to search for homoclinic 

and heteroclinic orbits in this region of the space under study in future works. 

Lyapunov Orbits with increased mass ratio. 

 
In this section, the work consists in investigating the Lyapunov orbits when we keep the 

rotating mass dipole constant and modify the mass ratio of the system. The dimension of the 

dipole is kept constant in the value d = 250 meters. This study is performed by modifying the 

mass ratio of the system. We considered situations where the mass of the less massive primary 

(dipole) has the values of 0.05, 0.1, 0.15 and 0.2. These values make M1 to become less massive 

and, consequently, M2 becomes more massive. Figure 19 shows the Lyapunov orbits for various 

mass ratios, considering the Jacobi constant 𝐶∗ = 3.10. 

 

Figure 19. Lyapunov orbits around the equilibrium points L1 and L2 for different mass ratios. 𝑪∗ =
𝟑. 𝟏𝟎. 
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The color of the orbits is related to the mass ratio of the system. When the mass ratio is µ∗= 

0.1, for example, the curve is black. It can be seen from Figure 19 that, as we increase the mass 

ratio of the system, the equilibrium point L1 shifts considerably, causing the orbits around this 

bridge to shift as well, following the movement of the equilibrium point L1. On the other hand, 

the equilibrium point L2 moves very little, which makes the orbits around this point to become 

concentric. Due to the fact that, as we increase the mass ratio of the system, the equilibrium 

points L1 and L2 move further away from the rotating mass dipole, causing the Lyapunov orbit 

to become less deformed. Figure 20 shows the Lyapunov orbits for various mass ratios, 

considering the Jacobi constant 𝐶∗ = 3.01. 

 

 

 

Figure 20. Lyapunov orbits around the equilibrium points L1 and L2 for different mass ratios. 𝑪∗ = 

3.01. 

CONCLUSION 

In this work, we performed an analysis of the Lyapunov planar orbits around the equilibrium 

points L1 and L2 in the restricted three-body synchronous problem. The initial estimates for 

orbits were found from the linearization of the equations of motion. In the modeling, we 

considered that one of the primary bodies was a mass point and the other one was modeled as a 

rotating mass dipole whose rotation is synchronous with the system. It is possible to notice that, 

when we take into account the elongated form of one of the primaries, compared to the 

restricted classical problem of three bodies, the trajectories found differ from each other, 

making the orbits in this model to suffer greater deviations due to the gravitational effects of 

M2. It has been noted that the modification in the size of M2 does not substantially alter the 

orbit's amplitude, but significantly affects the shape of the orbit, causing the Lyapunov orbit to 

become more deformed. We also made a numerical investigation modifying the mass ratio of 

the system. We found that, when we increase the mass ratio, the equilibrium point L1 shifts 

considerably, making the Lyapunov orbit around this equilibrium point also to move away from 

M2. On the other hand, the equilibrium point L2 has a subtle displacement, as we increase the 

mass ratio of the system, making the Lyapunov orbits around L2 to become egocentric. 

The equilibrium points are considered as regions in space where they receive the least 

disturbance. So, these points are good places to hold a spaceship and can be used as parking 

orbits. 

 

 



17 
 

Acknowledgements 

The authors wish to express their appreciation for the support provided by grants# 

406841/2016-0 and 301338/2016-7 from the National Council for Scientific and Technological 

Development (CNPq), and grants #2013/07174-4, #2014/22295-5, #2014/22295-5, # 

2016/14665-2, 2016/18418-0, 2016/24561-0, 2018/00059-9 from São Paulo Research 

Foundation (FAPESP). We also are grateful for the financial support from the National Council 

for the Improvement of Higher Education (CAPES).  

 

REFERENCES  

1 E. Canalias and Josep J. Masdemont, “Homoclinic and heteroclinic transfer trajectories between planar Lyapunov 

orbits in the sun-earth and earth-moon systems.” Discrete and Continuous Dynamical Systems. Vol. 14, No 2, 2016, 

pp. 261—279. 

2 21st International Symposium on Space Flight Dynamics, ARTEMIS: “The First Mission to the Lunar Libration 

Orbits”, September 28 - October 2 2009. 

3 M. Hechlera, M. Morab, M. Nogalesb, and A. Yezc, “Orbit Concepts at L2 for Soyuz Launches from Kourou,” Acta 

Astronautica, Vol. 62, No. 2-3, 2008, pp. 140–150. 

4 Knutson, A. J.,  Howelly, Kathleen. “Using kane’s method to incorporate attitude dynamics in the circular restricted 

three body problem” Advances in the Astronautical Sciences Vol. 143, pp. 2095 

5 Robert W. Farquhar, "The Flight of ISEE-3/ICE: Origins, Mission History, and a Legacy, "The Journal of the 

Astronautical Sciences, Vol. 49, No 1, 2001, pp. 23-73. 

6 D. Richardson, “Halo Orbit Formation for the ISEE-3 Mission,” Journal of Guidance and Control, Vol. 3, No. 6, 

1980, pp. 543–448. 

7 Huber, M., Bonnet, R., Dale, D., Arduini, M., Fröhlich, C., Domingo, V., and Whitcomb, G., “The History of the 

SOHO Mission,” ESA Bulletin, Vol. 86, May 1996, pp. 25–35. 

8 A. Knutson and K. C. Howell, “Coupled orbit and attitude dynamics for spacecraft composed of multiple bodies in 

earth-moon halo orbits”, 63rd International Astronautical Congress, paper IAC-12-C1.8.1. 

9 D. Folta, “Formation Flying Design and Applications in Weak Stability Boundary Regions,” Annals of the New 

York Academy of Science, Vol. 1017, 2004, pp. 95–111. 

10  V.V. Radzievskii, “The restricted problem of three bodies taking account of light pressure.” Astron. Zh. vol. 27, 

no. 5, pp. 250, 1950 

11 Y.A. Chernikov, “The photogravitational restricted problem of three bodies.” Astron. Zh. vol. 47, pp. 217-223, 

1970. 

 
12 K.B. Bhatnagar and J.M. Chawla, “A study of the Lagrangian points in the photogravitational restricted three-body 

problem” Indian J. Pure Appl. Math. vol. 10, no. 11, pp. 1443-1451, 1979. 

13 R.K. Sharma, “The linear stability of libration points of the photogravitational restricted three-body problem when 

the smaller primary is an oblate spheroid.” Astrophys. Space Sci. vol. 135, no. 2, pp. 271-281, 1987. 

14 A.L. Kunitsyn and A.T. Tureshbaev, “On the collinear libration points in the photogravitational three-body 

problem.” Celest. Mech. vol. 35 no. 2, pp. 105-112, 1985. 

15 L.G. Lukyanov, “On the family of the libration points in the restricted photogravitational three-body problem.” 

Astron. Zh. vol. 65, pp. 422-432, 1988. 

16 Chermnykh, S.V.: Vestn. Leningr. Univ. 2(8), 10 (1987). 

17 Kirpichnikov, S.N., Kokoriev, A.A.: Vestn. Leningr. Univ. 3(1), 73 (1988). 

18 Kokoriev, A.A., Kirpichnikov, S.N.: Vestn. Leningr. Univ. 1(1), 75 (1988). 

19 Zeng, X.Y., et al.: Astrophys. Space Sci. 356, 29 (2015). 



18 
 

20 Ferrari, F., Lavagna, M., Howell, K.C.: Celest. Mech. Dyn. Astron. 125(4), 413 (2016). 

21 Zeng, X.Y., Fang, B.D., Li, J.F., et al.: Acta Mech. Sin. 32(3), 535 (2016). 

22 Santos, L.B.T., Prado, A.F.B.A., Sanchez, D.M., “Equilibrium points in the restricted synchronous three-body 

problem using a mass dipole model”Astrophys. Space Sci. Vol. 362 No. 61, 2017, pp-60. 

23 Santos, L.B.T., Prado, A.F.B.A., Sanchez, D.M., “Equilibrium points around a double rotating mass dipole” 
COBEM. Procceedings of the 24th ABCM International Congress of Mechanical Engineering (2017). 

24 Santos, L.B.T., Prado, A.F.B.A., Sanchez, D.M.: Astrophysics and Space Science 362(11), 202 (2017). 

25 Wang Sang Koon, et al, “Heteroclinic Connections Between Periodic Orbits and Resonance Transitions in Celestial 

Mechanics,” Chaos: An Interdisciplinary Journal of Nonlinear Science. Vol. 10, No 2, 2000. 
 
26 Szebehely, V. “Theory of Orbits”. Academic Press, New York/London (1967). 

27 McCuskey, S.W. “Introduction to Celestial Mechanics”, 1st edn. Addison-Wesley, Reading (1963). 

 
28 Dutt, P., Anilkumar, A.K.: Adv. Space Res. 54, 2050 (2014). 

 
29 Ren, Y., Shan, J.: Commun. Nonlinear Sci. Numer. Simul. 19, 554 (2014). 

 
30 Molton, F.R.: An Introduction to Celestial Mechanics, 4th edn. The Macmillan Company, New York (1960). 

 
31 Pushparaj, N., Sharma, R. K. “Halo Orbits at Sun-Mars L1, L2 in the Photogravitational Restricted Three-Body 

Problem with Oblateness” Advances in Astrophysics Vol. 2 No. 1, 2017, pp-35. 

 
32 J.D. Mireles James, “Celestial Mechanics Notes Set 4: The Circular Restricted Three Body Problem”, 2006. 

33 J.D. Mireles James, “Celestial Mechanics Notes Set 5: Symmetric Periodic Orbits of the Circular Restricted Three 

Body Problem and their Stable and Unstable Manifolds”, 2006. 

 


