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Critical behavior of dynamic vortex Mott transition in superconducting arrays
at fractional vortex densities
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We study the differential resistivity transition of two-dimensional superconducting arrays induced by an
external driving current, in the presence of thermal fluctuations and a magnetic field corresponding to f flux
quantum per plaquette. Recent experiments have identified this transition as a dynamic vortex Mott insulator
transition at vortex densities near rational values of f . The critical behavior is determined from a scaling analysis
of the current-voltage relation near the transition, obtained by Monte Carlo simulations of a Josephson-junction
array model in the vortex representation. For a square-lattice array, the critical exponents obtained near f = 1/2
are consistent with the experimental observations. The same scaling behavior is observed near f = 1/3. For
a honeycomb array, although similar results are obtained for f = 1/3, the transition is absent for f = 1/2,
consistent with an incommensurate vortex phase.
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I. INTRODUCTION

The concept of a Mott insulator phase, which has been
of fundamental importance for the understanding of transport
properties of many materials with strong Coulomb interac-
tions, can also be extended to other quantum systems [1–3]
and even to systems without quantum fluctuations [4–6]. An
important case is the vortex lattice in type II superconductors
in the presence of columnar pinning defects, when the vortex
density is close to the density of pinning sites [6]. Below a
critical temperature, the vortex mobility vanishes because the
vortex occupied pinning sites prevent motion of individual
vortices, leading to a zero resistance state. The analogy to
a Mott insulator phase follows from the mapping of the
three-dimensional vortex lattice system to interacting bosons
in two dimensions at zero temperature, where there is an
insulating phase of localized bosons with a finite energy gap.
Transitions out of the Mott insulator phase have been widely
studied. Besides thermodynamic transitions as a function of
temperature [7,8], dynamic Mott transitions induced by an
external driving current have attracted particular attention
[4,5,9–11], recently. Since the dynamic Mott transition ap-
pears to have similar critical behavior as the thermal one [4,7],
with the temperature corresponding to the current, studies of
the dynamical version might help to understand the critical
behavior of the equilibrium transition.

Recently, a remarkable dynamic vortex Mott transition
has been revealed through experiments on two-dimensional
Josephson-junction arrays (JJA) in the form of supercon-
ducting grains coupled by the proximity effect on a square
lattice, in the presence of a perpendicular magnetic field
[4,9]. It corresponds to a differential resistivity transition at
low temperatures and finite driving currents, instead of the
usual equilibrium resistivity transition at higher temperatures
and zero current due to thermal fluctuations [12–16] or the
dynamical depinning transitions at higher currents and low
temperatures [17]. For a JJA in an external magnetic field,

the average vortex density is determined by the frustration
parameter f , corresponding to the number of flux quantum
per plaquette. The equilibrium phase transitions of a JJA are
strongly dependent [12] on the value of f and the geometry
of the lattice [13]. While for a square lattice, rational values of
f leads to vortex lattices commensurate with the underlying
pinning potential and finite temperature resistive transitions,
in a honeycomb lattice with f = 1/2, the existence or nature
of the equilibrium transition is not fully understood, due to
an additional geometric frustration [16]. In the recent experi-
ments on a square lattice [4], dynamic vortex Mott insulator
to metal transitions were clearly identified near rational vortex
densities, such as f = 1, 2 and 1/2. The differential resistivity
as a function of f for increasing currents displays the reversal
of a minimum into a maximum near these values of f . This is
the analog of the dip-to-peak reversal of the electronic density
of states near the Fermi level of the (quantum) Mott insulator
to metal transition [8,9]. Similar behavior was observed earlier
in other superconducting arrays but it was not regarded as
a manifestation of a dynamic transition [18,19]. The scaling
behavior of the differential resistivity as a function of the
deviation of current δI and frustration δf from their critical
values Ic and fc was shown to be described by a single
critical exponent ε. For fc = 1 and 2, the obtained value,
ε = 2/3, is consistent with a mean field description of phase
slip dynamics [4] and, more recently, with results obtained
by mapping this dynamical transition into a non-Hermitian
quantum problem [9,20]. On the other hand, near fc = 1/2,
a distinct critical exponent ε = 0.5 was found, indicating
that the dynamic vortex Mott transition at fractional vortex
densities may belong to different universality classes. Very
recent Monte Carlo (MC) simulations for a model of particles
with long-range Coulomb interactions [5] near a particle
density 1/2 found a very different critical exponent, ε = 1.5,
which might be due to the form of the interaction potential.
Therefore, a more realistic JJA array model, where vortices
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interact logarithmically, is required to clarify this interesting
question and also investigate the effects of lattice geometry.

In this work we study the differential resistivity transition
(dynamic Mott transition) in superconducting arrays by MC
simulations of a JJA model in the vortex representation with
logarithmic interactions. The critical behavior is determined
from a scaling analysis of the current-voltage characteristics
and differential resistivity near the transition. From scaling
arguments, we obtain ε = 1/2ν, where ν is the correlation
length exponent. For a square lattice, we find ε ∼ 0.5 near
frustration f = 1/2, consistent with the experimental obser-
vations. The same scaling behavior is observed near f = 1/3.
For a honeycomb array, although similar results are obtained
for f = 1/3, the transition is absent for f = 1/2, consistent
with an incommensurate vortex phase.

II. MODEL AND SIMULATION

We consider two-dimensional superconducting arrays in a
transverse magnetic field, described by the JJA Hamiltonian
[12,14]

H = −Eo

∑
〈kl〉

cos(θk − θl − Akl ), (1)

where θk is the phase of the local superconducting order
parameter at the sites k of the lattice, Eo = (h̄/2e)Io, and
Io is the single-junction critical current. The line integral of
the vector potential Akl due to the external field �B = ∇ × �A
is constrained to

∑
kl Akl = 2πf around each elementary

plaquette, where f is the number of flux quantum φo =
hc/2e per plaquette. This model is periodic in f with period
f = 1 with reflection symmetry about f = 1/2. To study the
vortex dynamics it is convenient to rewrite the above phase
Hamiltonian in the vortex representation

H = 2π2Eo

∑
i,j

(ni − f )G′
i,j (nj − f ), (2)

which can be obtained following a standard procedure [21]
in which the phase model is replaced by a periodic Gaussian
model, leading to explicit vortex variables represented by
integer charges ni at the sites ri = (xi, yi ) of the dual lattice
and constrained by the neutrality condition,

∑
i (ni − f ) = 0.

The vortex interaction is given by G′
ij = G(ri − rj ) − G(0),

where G(r ) is the lattice Green’s function corresponding to
the dual lattice of the JJA geometry [22–24], which is square
and triangular for square and honeycomb arrays, respectively.
G′(r) diverges logarithmically as − log(r )/(2π ) for large
separations.

For a square lattice,

G(r) = 1

L2

∑
k

eik·r

4 − 2 cos(k · a1) − 2 cos(k · a2)
, (3)

where L is the system size, k are the reciprocal lattice vectors,
and a1, a2 are two perpendicular nearest-neighbor lattice
vectors. For a JJA on a honeycomb lattice, the dual lattice is
triangular and the corresponding lattice Green’s function is

given by [22]

G(r) = 1

2L2

∑
k

eik·r

3 − cos(k · a1) − cos(k · a2) − cos(k · a3)
,

(4)
where a1, a2, and a3 are three nearest-neighbor lattice vectors
separated by 120◦ from each other.

We study the nonequilibrium response of the JJA under
an applied driving current by driven MC simulations of the
vortex model under an applied force [23–26]. The vortex
dynamics is assumed to be overdamped. The force represents
the effect of the driving current density J on the vortices,
acting as a Lorentz force transverse to the velocity, lead-
ing to an additional contribution to the energy in Eq. (2),
−(h/2e)J

∑
i nixi , when J is in the ŷ direction. The MC

time is identified as the real time t with the unit of time
dt = 1, corresponding to a complete MC pass through the
lattice. A MC step consists of adding a dipole of vortex
charges to a nearest-neighbor charge pair (ni, nj ), using the
Metropolis algorithm. Choosing a nearest-neighbor pair (i, j )
at random, the step consists of changing ni → ni − 1 and
nj → nj + 1, corresponding to the motion of a unit charge by
a unit length from ri to rj . The move is accepted with prob-
ability min[1, exp(−�H/kT )], where �H is the change in
the energy. Periodic boundary conditions are used in systems
of linear size L. The driving current J biases the added dipole,
leading to a net flow of vortices in the direction transverse to
the current, if the vortices are mobile. This vortex flow gener-
ates an electric field E along the current which can be calcu-
lated (in arbitrary units) as E(t ) = 1

L

∑
i �Qi (t ), after each

MC pass through the lattice, where �Qi = (ri − rj) · x̂ for an
accepted vortex dipole excitation at the nearest-neighbor sites
(i, j ) and �Qi = 0 otherwise. Due to the neutrality condition,
f is varied in multiples of 1/L2. Temperature T is measured
in units of Eo and J in units of Io/2π . We use typically 4×105

MC passes to compute time averages and the same number of
passes to reach steady states.

III. RESULTS AND DISCUSSION

A. Differential resistivity transition

We first consider the dynamical transition near f = 1/2 for
a JJA on a square lattice. The effect of increasing the frustra-
tion f from f = 1/2 on the current-voltage (I -V ) relation is
shown in Fig. 1(a), in terms of the current density J = I/L

and electric field E = V/L. The temperature is much below
the critical temperature, Tc ≈ 0.8, of the equilibrium resistive
transition (J = 0) of the corresponding commensurate vortex
lattice [23,25] at f = 1/2 and so the linear resistivity ρL =
dE/dJ |J=0 vanishes. The range of currents is also much
below the corresponding zero-temperature depinning current,
Jp ≈ 4.9. While E remains essentially zero for increasing J

when f = 1/2, a small increment in f leads to a sharp in-
crease above a critical value Jc ≈ 1.6–1.7 [Fig. 1(a)]. Further
increase of f tends to smooth out the slope of the E × J

curve near Jc. This change in the slope can be seen much
clearer in the behavior of the differential resistivity, dE/dJ ,
as shown in Fig. 1(b), which also reveals that the curves for
different f above fc ≈ 1/2 cross approximately at the same
point Jc. The crossing point strongly suggests the presence of
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FIG. 1. (a) Current-voltage (I -V ) relation (J = I/L, E = V/L)
for increasing frustration f near f = 1/2 for a JJA on a square
lattice. Temperature T = 0.2 and system size L = 32. From the
bottom up, f increases from 0.5 to 0.5195 in 19 equal steps.
(b) Differential resistivity dE

dJ
for f > 1/2 obtained numerically from

(a) near the current induced dynamical transition. (c) dE

dJ
plotted as a

function of f for different driving currents. From the bottom up, J

increases from 1.322 to 1.865 in 16 equal steps. Black dots indicate
the separatrix dE/dJ |J=Jc

. (d) Scaling plot of dE

dJ
near the dynamical

transition for f > 1/2, with Jc = 1.66, fc = 0.502, and ε = 0.55.

an underlying continuous transition, where dE/dJ behaves
as a scaling invariant quantity and f − fc acts as a relevant
perturbation. In such a case, one expects the scaling behavior
dE/dJ ≈ F (δJ/|δf |ε ), where F (x) (with F (0) = c, a con-
stant) is a scaling function, δJ = J − Jc, δf = f − fc and
1/ε is the crossover critical exponent. Alternatively, dE/dJ

plotted as a function of f for different currents shown in
Fig. 1(c), where data for f < 1/2 is also included, clearly
shows the reversal of a minimum into a maximum near f =
1/2 for increasing current density at Jc. This behavior was first
observed in the experiments and identified as a signature of
the dynamic vortex Mott insulator-metal transition [4]. Since
Jc is well below the depinning critical current, this transition is
unrelated to crossover effects near the current-induced vortex
lattice depinning. To verify the scaling behavior, we plot the
data near the transition, in Fig. 1(d), according to a similar
scaling form, which was proposed in the experiments [4],

dE/dJ − dE/dJ |J=Jc
= H (δJ/|δf |ε ), (5)

where H (0) = 0. Data for different J and f collapse into the
same smooth curve when Jc, fc, and ε have the appropriate
values. The scattering of the data is mainly due to the numer-
ical calculation of the derivative dE/dJ . The data collapse
was obtained by varying Jc and fc slightly from the above
estimates and using different values of ε to estimate an error
bar. The value obtained for the critical exponent, ε = 0.50(6),

FIG. 2. Same as Fig. 1 but for f = 1/3 and L = 36. (a) From
the bottom up, f increases from 1/3 to 0.3480 in 20 equal steps.
(b) dE

dJ
for f > 1/3 near the transition. (c) dE

dJ
as a function of f for

different J . From the bottom up, J increases from 0.5898 to 0.9559
in 19 equal steps. (c) Scaling plot of dE

dJ
for f > 1/3, with Jc = 0.83,

fc = 1/3 and ε = 0.5.

is consistent with the one obtained from the experiments,
strongly supporting the universality of this dynamical transi-
tion. Our numerical results, which were obtained for a model
of logarithmically interacting vortices, also supports the re-
cent conjecture [5] that this exponent depends on the form of
the interaction potential, since ε = 1.5 was found for a model
of particles with long-range Coulomb interactions. Another
low-order commensurate frustration, f = 1/3, displays the
same scaling behavior with ε = 0.50(6) (Fig. 2).

For a JJA on a honeycomb lattice, similar behavior is
also found for f = 1/3 (Fig. 3). However, for f = 1/2,
there is no crossing in the current dependence of dE/dJ for
increasing frustration [Fig. 4(a)], indicating the absence of a
dynamic vortex Mott transition. Moreover, since dE/dJ |J→0

FIG. 3. (a) Differential resistivity dE

dJ
near f = 1/3 for a JJA on

a honeycomb lattice near the current induced dynamical transition.
Temperature T = 0.2 and system size L = 36. f increases from
0.3387 to 0.3480 in 13 equal steps. (b) Scaling plot of dE

dJ
near the

dynamical transition with Jc = 0.403, fc = 0.3378, ε = 0.5.
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FIG. 4. (a) Differential resistivity dE

dJ
for increasing frustration f

near f = 1/2 for a JJA on a honeycomb lattice. Temperature T =
0.2 and system size L = 36. f increases from 0.5 to 0.5131 in 18
equal steps. (b) Linear resistivity ρL as function of temperature T for
f = 1/2 (squares) and f = 1/3 (circles). Dotted line corresponds to
an Arrhenius thermal activated behavior.

is nonzero, the linear resistivity ρL is finite. To confirm
this behavior, we also obtained ρL from equilibrium volt-
age fluctuations, without imposing a current bias, using the
fluctuation-dissipation relation

ρL = 1

2kT

∫
dt〈V (0)V (t )〉. (6)

As shown in Fig. 4(b), the linear resistivity remains finite at
lower temperatures, displaying an Arrhenius behavior while
for f = 1/3 it vanishes below a critical temperature. This
is consistent with the absence of an equilibrium resistive
transition at finite temperatures for f = 1/2 on a honeycomb
lattice, in agreement with recent numerical simulations for
the same model in the phase representation [16]. For the
JJA on square lattice at irrational frustration, f = (3 − √

5)/2
(Golden ratio), there is also no crossing in the current depen-
dence of dE/dJ for increasing frustration and so a dynamical
transition is also absent (Fig. 5). The linear resistivity ρL

remains finite at lower temperatures, displaying an Arrhe-
nius behavior while for f = 1/3 it vanishes below a critical
temperature. The absence of an equilibrium transition for
irrational f is also in agreement with simulations in the phase

FIG. 5. (a) Differential resistivity dE

dJ
for increasing magnetic

frustration f near an irrational frustration f = (3 − √
5)/2 (Golden

ratio) for a JJA on a square lattice. Temperature T = 0.2 and system
size L = 34. f increases from 0.3824 to 0.3901 in 9 equal steps.
(b) Linear resistivity ρL as function of temperature T for f irrational
(squares) and f = 1/3 (circles). Dotted line corresponds to an Ar-
rhenius thermal activated behavior.

FIG. 6. Scaling plot of E(J, f ) near the dynamical transition for
f = 1/2 on a square lattice, with Jc = 1.66, fc = 0.502, β = 1, and
ε = 0.5. Temperature T = 0.2 and system size L = 32.

representation [15,27]. Therefore, an underlying equilibrium
resistive transition at nonzero temperatures is required for the
observation of the dynamical transition at nonzero driving
currents at lower temperatures.

B. Current-voltage scaling

We now describe the expected behavior of the differential
resistivity from general arguments of the dynamic scaling
theory for the current-voltage characteristics [24]. Assuming
a continuous dynamical transition at Jc, measurable quantities
should scale with the diverging correlation length ξ ∼ |δJ |−ν

and relaxation time τ ∼ ξz, where ν and z are the correlation
length and dynamic critical exponents, respectively. Since the
electric field E generated by moving vortices with density f

and velocity v is proportional to f v, the singular contribution
to E should scale as E ∼ ξ 1−z. Crossover effects due to a
change δf should occur when |δf |ξ 2 ≈ 1, corresponding to
an additional vortice in a correlated area, revealing that δf is
a strongly relevant perturbation and should therefore appear
in the scaling function in the combination δJ/|δf |ε , with
ε = 1/2ν. As a function of δJ and δf , one then expects the
scaling behavior

E(J, f ) = Fo(J, f ) + |δJ |βF1(δJ/|δf |ε ), (7)

where β = (z − 1)ν, Fo is a regular contribution, analytic in
δJ and δf , and F1(x) is a scaling function with F1(0) = c,
a constant. The scaling form for the differential resistivity
dE/dJ can then be written as

dE(J, f )

dJ
− dE(J, f )

dJ
|J=Jc

= |δf |(β−1)εH (δJ/|δf |ε ), (8)

with H (0) = 0. We have neglected the δJ dependence of
dFo (J,f )

dJ
. This scaling form reduces to the one used in the

experiments [Eq. (5)] when β = 1, which can be obtained
with z = 2 and ν = 1, leading to a crossover exponent ε =
1/2ν = 0.5, in agreement with the experimental results [4]
and the data collapse for dE/dJ in Fig. 1(d). In fact, a good
data collapse is obtained for the bare data E(J, f ) with these
critical exponents, according to the scaling form of Eq. (7)
(Fig. 6).
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FIG. 7. Scaling plots of the relaxation time τ near the dynamical
transition for f = 1/2 on a square lattice. (a) Near the transition
for increasing f and J > Jc with Jc = 1.54, fc = 0.502, z = 2, and
ν = 1. f increases from 0.5035 to 0.5083 in 11 equal steps. (b) At
the transition for increasing f and different system sizes, L = 42,
48, and 54 with Jc = 1.61, fc = 0.502, and z = 2.1.

To check the conjectured values of z and ν from indepen-
dent data, we performed a scaling analysis of the relaxation
time τ (J, f ), obtained from the voltage time correlation
function

C(t ) = 〈V (t )V (0)〉 − 〈V (t )〉2

(〈V (t )2〉 − 〈V (t )〉2
. (9)

Near the transition, τ can be estimated from the expected
time dependence of C(t ) at long times, C(t ) ∝ e−t/τ . Using
ε = 1/2ν, τ should then satisfy the scaling form

τ |δJ |zν = F2(δJ/|δf |1/2ν ), (10)

in the absence of finite-size effects. At the transition, the
correlation length is cutoff by the system size L and τ should

satisfy the finite-size scaling form

τ/Lz = F3(L2|δf |). (11)

Indeed, as shown in Figs. 7(a) and 7(b), a reasonable data
collapse according to the above scaling forms are obtained
with z ≈ 2 and ν ≈ 1.

IV. CONCLUSIONS

In summary, we have studied a current-induced dynamical
transition in two-dimensional JJA, with a sharp change in
the differential resistance behavior, which is a manifestation
of the dynamic vortex Mott insulator transition identified in
experiments [4,9]. From MC simulations and scaling analy-
sis, we find the critical exponent ε = 0.50(6) near f = 1/2,
consistent with the experimental observations for a square
array and the conjecture [5] that this exponent depends on the
form of the interaction potential. For a honeycomb array, how-
ever, the transition is absent for f = 1/2. As a consequence,
minimum to maximum reversal in the magnetodifferential
resistance for increasing current should not occur for f = 1/2
in such systems, as for example, in superconducting thin
films with a triangular lattice of nanoholes [28,29], which
can be modeled by a honeycomb JJA [16]. It should be noted
that these results were obtained assuming overdamped vortex
dynamics. Nevertheless, it should be interesting to study the
effects of underdamped dynamics, as this approximation may
not be appropriate for JJA in general.
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